Category Archives: 2050 targets

Hydrogen and electricity for low carbon heat

Hydrogen and electricity are competing carriers, and there may be a role for both in providing low carbon heat.

There has recently been a lot of interest in the role of hydrogen as a carrier of low carbon energy, because it produces no CO2 on combustion (or oxidation in a fuel cell).  This is the first of three posts looking at hydrogen and how it might compete with electricity to provide low carbon heat.  Hydrogen and electricity may also compete in transport, but that is a large subject in its own right and will need to await further posts.

This first post outlines some of the possibilities and the issues raised.  The next post will compare electricity with hydrogen for heating in buildings.  The third post will look at the ways they may complement each other to supply heat.

There are broadly two main sources of primary energy for low carbon heat:

  • Fossil fuels with CCS, which I’ve assumed in these posts will usually be natural gas.
  • Renewables, likely in practice to be mainly wind and solar.

Each of these primary energy sources can get to the energy consumer in the form of electricity or hydrogen.  Wind and solar can produce low carbon electricity directly, or they can produce hydrogen via electrolysis of water.  Natural gas can be burnt in a CCGT to produce electricity.  It can also be processed to produce hydrogen, most commonly in a steam methane reformer (SMR).  I’ve assumed here that SMRs are used, although many are looking at alternative approaches such as autothermal reforming (ATRs) which may allow for higher efficiencies and capture rates.

If fossil fuels are used CCS is required, as both CCGTs and SMRs produce CO2.  This means they provide low carbon energy, rather than a zero-carbon energy, as a maximum of 90-95% of the CO2 produced is captured.  Any CCS built now or in the future will likely still be in use by 2050, so its capture rate must be judged against 2050 net-zero targets.  In this context, the residual emissions from any large-scale use of CCS for fossil fuels are likely to be significant, and may place limits on the extent of deployment.  SMRs produce different streams of CO2. Some of this is concentrated and so relatively easy to capture, some is more dilute.  Both streams need to be captured for the technology to play an appropriate role in a net-zero carbon economy.

Both CCGTs and SMRs also produce waste heat, which may be used, so improving the overall thermal efficiency, although applications to date have been limited.

Hydrogen can be converted into electricity using a fuel cell or CCGT (with appropriately designed turbines).  This may enable use of hydrogen for electricity storage.

Electricity for building heating is likely to come from heat pumps (likely mainly air source heat pumps) as these greatly improve efficiency.

This gives a variety of routes for primary energy to low carbon end use. These are shown in the diagram below.  In practice several of these may co-exist, and some may not happen at scale.  The pathways shown assume natural gas cannot continue to act as a carrier of energy to individual buildings.  This is because its combustion inevitably produces CO2 and very small-scale CCS for individual buildings is likely to prove impractical, for example because of the very extensive CO2 transport network that would be required.

Both fossil fuels and renewables can deliver energy as electricity or hydrogen …

Which mix of these pathways will provide the best solution? It’s not yet clear.  It will depend on various factors.

Suitability for end use.  Some industrial processes require high temperature heat or a direct flame, which heat pumps cannot provide.  Conversely, hydrogen needs to demonstrate its safety in a domestic context, though this is likely tractable.

Consumer acceptability. This is critical for residential heating, and both hydrogen and heat pumps face potential difficulties.  For example, heat pumps may be perceived as noisy, or require modifications such as installation of larger radiators which people resist.

Costs.  Which route is cheaper depends on a wide range of factors, including :

  • The capital costs of the equipment (e.g. CCGT or SMR, hydrogen boilers, and heat pumps)
  • The costs of reinforcing, creating or repurposing grids, including the extent to which the natural gas gird can be repurposed for hydrogen, and the cost of reinforcing the electricity distribution network to accommodate demand from heat pumps.
  • The cost of the primary energy, for example whether renewable energy is produced at times of low demand so might be available at a low price. If electricity from renewables is available very cheaply then resistance heating without heat pumps may make sense in some cases.
  • The thermal efficiency of the processes, for example the extent to which CCS adds costs by requiring additional energy, and the coefficient of performance (heat out divided by electricity in) for heat pump, especially in winter.
  • The costs of electricity storage via batteries or as hydrogen.
  • Load factor for heat and electricity production.

Many of these variables are uncertain.  They also vary with location and over time. The very large cost falls for renewable electricity demonstrate the need for caution in judging options on present costs.

In my next post I will take a look at how these factors may play out for building heating in the UK, and will consider the policy implications.

Adam Whitmore – 30th September 2019

 

 

Europe’s phase out of coal

Europe is progressing with phasing out hard coal and lignite in power generation, but needs to move further faster, especially in Germany and Poland

Reducing coal use in power generation and replacing it with renewables (and in the short run with natural gas) remains one of the best ways of reducing emissions simply, cheaply and quickly at large scale.  Indeed, it is essential to meet the targets of the Paris Agreement that the world’s limited remaining cumulative emissions budget is not squandered on burning coal and lignite in power generation.

Europe is now making progress in phasing out coal.  The UK experience has already illustrated what can be done with incentives from carbon pricing to reduce coal generation.  Emissions from coal have reduced by more than 80% in the last few years, even though coal plant remains on the system[i].  However, many countries, including the UK, are now going further and committing to end coal use in power generation completely in the next few years.  The map below shows these commitments as they now stand.  Most countries in western Europe now have commitments in place. (Spain is an exception.  The government is expecting coal plant to be phased out by 2030, but currently does not mandate this.)

Map: Current coal phase-out commitments in Europe[ii]

Source: Adapted from material by Sandbag (see endnotes).

In some countries there is little or no coal generation anyway.  In other countries plants are old and coming to the end of their life on commercial grounds, or are unable to comply with limits on other pollutants.  In each case phase-out is expected to go smoothly.

However, the largest emitters are mainly in Germany and Poland and here progress is more limited.  Germany has now committed to coal phase-out.  But full phase-out might be as late as 2038.  Taking another 20 years or so to phase out such a major source of emissions is simply too long.  And Poland currently looks unlikely to make any commitment to complete phase out.

This means the Europe is still doing less than it could and should be doing to reduce emissions from coal and lignite.  As a result, EU emissions are too high, and the EU loses moral authority when urging other nations, especially in Asia and the USA, to reduce their emissions further, including by cutting coal use.

Several things are needed to improve this situation, including the following.

  • Further strengthening the carbon price under the EUETS by reducing the cap. I looked at the problem of continuing surpluses of allowances in another recent post, and accelerated coal closure would make the surplus even greater.  Although the rise in the EUA price in the last 18 months or so is welcome, further strengthening of the EUETS is necessary to reduce the risk of future price falls, and preferably to keep prices on a rising track so they more effectively signal the need for decarbonisation.
  • Continuing tightening of regulations on other pollutants, which can improve public health, while increasing polluters’ costs and therefore adding to commercial pressure to close plant.
  • Strengthening existing phase out commitments, including be specifying an earlier completion date in Germany.
  • Further enabling renewables, for example by continuing to improve grid integration, so that it is clear that continuing coal generation is unnecessary.

As I noted in my last post, making deep emissions cuts to avoid overshooting the world’s limited remaining carbon budget will require many difficulties to be overcome.  There is no excuse for failing to make the relatively cheap and easy reductions now.   Reducing hard coal and lignite use in power generation in Europe (and elsewhere) continues to require further attention.

Adam Whitmore – 18th June 2019

[i] See https://onclimatechangepolicydotorg.wordpress.com/2018/01/17/emissions-reductions-due-to-carbon-pricing-can-be-big-quick-and-cheap/

With and updated chart at:

https://onclimatechangepolicydotorg.wordpress.com/carbon-pricing/price-floors-and-ceilings/

[ii] Map adapted from Sandbag:

https://sandbag.org.uk/wp-content/uploads/2018/11/Last-Gasp-2018-slim-version.pdf

and data in:

https://beyond-coal.eu/wp-content/uploads/2018/11/Overview-of-national-coal-phase-out-announcements-Europe-Beyond-Coal-November-2018.pdf

and https://www.eia.gov/todayinenergy/detail.php?id=39652

How well is the UK on track for zero emissions by 2050?

By 2020 the UK will have very nearly halved its emissions over 30 years.  Reducing emissions by the same amount over the next 30 years will get the UK very close to zero.  However this will be very much more difficult.

A robust net zero target has been recommended for the UK …

A recent report by the UK’s Committee on Climate Change (CCC), the Government’s official advisory body, recommends that the UK adopts a legally binding target of net zero emissions of greenhouse gases by 2050[i], that is remaining emissions must be balanced by removal from the atmosphere.  If the Government agrees, this will be implemented by amending the reduction mandated by the Climate Change Act, from an 80% reduction from 1990 to a 100% reduction.

The target has several features that make it particularly ambitious.  It:

  • sets a target of net zero emissions covering all greenhouse gases;
  • includes international aviation and shipping;
  • allows no use of international offsets; and
  • is legally binding.

This is intended to end the UK’s contribution global warming.  It has no precedents elsewhere, although in France a bill with comparable provisions is under consideration[ii].

Progress to date has been good …

The UK has made good progress so far in reducing emissions since 1990.  Emissions in 2018 were around 45% below 1990 levels, having reduced at an average rate of about 12.5 million tonnes p.a. over the period.  On current trends, over the thirty years from 1990 to 2020 emissions will be reduced to about 420 million tonnes p.a., 47% below their 1990 levels.  Emissions will thus have nearly halved over the 30 years 1990 to 2020, half the period from 1990 to the target date of 2050.

Chart 1 shows how the UK’s progress compares with a linear track to the current target of an 80% reduction, to a 95% reduction and to a 100% reduction.  (For simplicity I’m ignoring international aviation and shipping).  The UK is currently on a linear track towards a 95% reduction by 2050.

Chart 1: Actual UK emissions compared with straight line progress towards different 2050 targets

 

Source: My analysis based on data from the Committee on Climate Change and UK Government.  Data for 2018 is provisional[iii]

The largest contributor to the total reduction so far has been the power sector.  Analysis by Carbon Brief[iv] showed that the fall in power sector emissions has been due to a combination deploying renewables, which made up about of third of generation in 2018, reducing coal use by switching to natural gas, and limiting electricity demand growth.

Industrial emissions have also fallen significantly.  However some of this likely represents heavy industry now being concentrated elsewhere in the world, so likely does not represent a fall in global emissions.  Emissions from waste have also fallen, due to better management.

Reducing emissions will be relatively easy in some sectors …

There are also reasons for optimism about continuing emissions reductions.  Many technologies are now there at scale and at competitive prices, which they were not in previous decades.  For example, falling renewables costs and better grid management, including cheaper storage, will help further decarbonisation of the power sector.  Electrification of surface transport now appears not only feasible, but likely to be strongly driven (at least for cars and vans) by economic factors alone as the cost of batteries continues to fall.

But huge challenges remain …

Nevertheless important difficulties remain for complete decarbonisation.

CCS is identified by the report as an essential technology.  However, as I have noted previously, it has made very little progress in recent years in the UK or elsewhere[v].  CCS is especially important for decarbonising industry.  This includes a major role for low carbon hydrogen, which is assumed to be produced from natural gas using CCS – although another possibility is that it comes from electrolysis using very cheap renewables power, e.g. at times of surplus.  CCS also looks to be necessary because of its use with bioenergy (BECCS), to give some negative emissions, though the lifecycle emissions from this will require careful attention

Decarbonising building heating, especially in the residential sector, continues to be a challenge.  The report envisages a mix of heat pumps and hydrogen, perhaps in the form of hybrid designs, with heat pumps providing the baseload being topped-up up by burning of hydrogen in winter.  I have previously written about the difficulties of widespread use of heat pumps[vi], and low carbon hydrogen from natural gas with CCS is also capital intensive to produce and therefore expensive to run for the winter only.  The scale of any programme and consumer acceptance remain major challenges, and the difficulties encountered by the UK’s smart meter installation programme – by comparison a very simple change – are not an encouraging precedent.

Emissions from agriculture are difficult to eliminate completely, and no technologies are likely to be available by 2050 that enable aviation emissions to be completely eliminated.  This will require some negative emissions to balance remaining emissions from these sectors.

Policy needs to be greatly strengthened …

Crucially several of the necessary transformations are very large scale, and need long lead times, and investment over decades.  There is an urgent need to make progress on these, and policy needs to recognise this.  This includes plans for significant absorption from reforestation, as trees need to be planted early enough that they can grow to be absorbing substantial amounts by 2050.

The UK’s progress on emissions reduction so far has been good, having made greater reductions than any other major economy[vii].  And technological advances in some areas are likely to enable substantial further progress.  However much more is needed.  In particular policy needs to look now at some of the difficult areas where substantial long-term investment will be needed

Adam Whitmore – 22nd May 2019

 

 

[i] https://www.theccc.org.uk/2019/05/02/phase-out-greenhouse-gas-emissions-by-2050-to-end-uk-contribution-to-global-warming/

 

[ii] The CCC report notes that Norway, Sweden and Denmark have net zero targets, but they allow use of international offsets (up to 15% in the case of Sweden).  France has published a target similar to the UK’s in a bill.  The European Commission has proposed something similar for the EU as a whole, but this is a long way from being adopted. California has non-legally binding targets to achieve net zero by 2045.  Two smaller jurisdictions (Costa Rica, Bhutan) have established net zero targets but these are expected to be achieved mainly by land use changes.  New Zealand has a draft bill to establish a target, but eliminating all GHGs will be difficult because of the role of agriculture in the New Zealand economy.

 

[iii] https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2018  The change from 2017 to 2018 is applied to the data series from 1990 produced by the CCC (the two data series differ very slightly in their absolute levels).

 

[iv] https://www.carbonbrief.org/analysis-uk-electricity-generation-2018-falls-to-lowest-since-1994

 

[v] https://onclimatechangepolicydotorg.wordpress.com/2018/04/25/a-limited-but-important-medium-term-future-for-ccs/

 

[vi] https://onclimatechangepolicydotorg.wordpress.com/2015/05/18/reducing-the-costs-of-decarbonising-winter-heating-needs-to-be-a-priority/

 

[vii] https://onclimatechangepolicydotorg.wordpress.com/2017/05/09/uk-emissions-reductions-offer-lessons-for-others/

 

Simple approximations can link emissions and temperature rise

Some simple indicators based on stylised emissions tracks help show clearly the consequences of different rates of emissions reductions.

A simple relationship allows the overall objectives – limiting temperature rises and reducing emissions – to be linked in a straightforward way[i]. Over relevant ranges and timescales temperature rise varies approximately linearly with cumulative emissions of CO2, after adjusting for the effect of other greenhouse gases.  Specifically, for every 3700 GtCO2 emitted (1000GtC) the temperature will rise by about 2.0 degrees[ii] (with estimates in the range 0.8 to 2.5 degrees)[iii].  This is the transient climate response to cumulative emissions (TCRE).

There has been around a 1.0 degree rise in temperatures to date[iv].  This means the remaining total of cumulative emissions (“carbon budget”) needs to be small enough to keep further temperature rises to around 0.5 to 1.0 degrees if it is to meet targets of limiting temperature rises to 1.5 to 2.0 degrees.

The remaining carbon budget for meeting a 1.5 degree target (with 50% probability) is around 770 GtCO2.  The remaining carbon budget for meeting a 2 degree target (again with 50% probability) is 1690 GtCO2[v].  This is illustrated in Chart 1, which shows temperature rise (median estimates) against additional emissions from 2018.

There are many uncertainties in the estimates of the remaining carbon budget.  These include different estimates of the climate sensitivity, variations in warming due non-CO2 pollutants, and the effect of additional earth system feedbacks, including melting of permafrost.  These can each change the remaining carbon budget by around 200GtCO2 or more.

Chart 1: Temperature rise from additional emissions

 

Source: adapted from Table 2.2 in http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

To look at the implications of this simple relationship we can make the following assumptions about future levels of emissions.  These are simplistic, but like all useful simplifications, allow the essence of the issue to be seen more clearly.

  1. Net emissions continue approximately flat at present levels (of around 42 GtCO2a.[vi]) until they start to decrease.
  2. Once net emissions start decreasing they continue decreasing linearly to reach zero – when any continuing emissions are balanced by removals of COfrom the atmosphere. They then continue at zero. There are of course many other emissions tracks leading to the same cumulative emissions.  For example, many scenarios include negative total emissions, that is net removal of carbon dioxide from the atmosphere, in the second half of the century.
  3. Relatively short-lived climate forcings, such as methane, are also greatly reduced, so that they eventually add about 0.15 degrees to warming[vii].

Chart 2 shows various temperature outcomes matched to stylised emissions tracks.  Cumulative emissions are the areas under the curvesTo limit temperatures rises to 1.5 degrees, emissions need to fall to zero by around 2050 starting in 2020, consistent with the estimates in the recent IPCC report[viii].

For limiting temperature rises to 2 degrees with 50% probability, zero emissions must be reached around 2095To reach the 2 degree target with 66% probability emissions need to be reduced to net zero about 20 years earlier – by around 2075 from a 2020 start.  |To reach a target of “well below” 2 degrees is specified in the Paris Agreement emissions must be reduced to zero sooner.

Chart 2: Stylised emissions reduction pathways for defined temperature outcomes (temperatures with 50% and 75% probability)

This simplified approach yields some useful rules of thumb.

Each decade the starting point for emissions reductions is delayed (for example from 2020 to 2030) adds 0.23 degrees to the temperature rise if the subsequent time taken to reach zero emissions is the same (same rate of decrease – i.e. same slope of the line) – see Chart 3 below. This increase is even greater if emissions increase over the decade of delay.  This is a huge effect for a relatively small difference in timing.

Delaying the time taken to get to zero emissions by a decade from the same starting date (for example reaching zero in 2070 instead of 2060) increases eventual warming by 0.11 degrees.

Correspondingly, delaying the start of emissions reductions increases the required rate of emissions reduction to meet a given temperature target.  For each decade of delay in starting emissions reductions the time available to reduce emissions to zero decreases by two decades.  For example, tarting in 2020 gives about 75 years to reduce emissions to zero for a 2 degrees target.  Starting in 2030 gives only 55 years to reduce emissions from current levels to zero once reductions have begun, a much harder task.

Chart 3: Effect of delaying emissions reductions (temperatures with 50% probability)

These results are, within the limits of the simplifications I’ve adopted, consistent with other analysis (see notes at the end for further details)[ix].

How realistic are these goals? Energy infrastructure often has a lifetime of decades, so the system is slow to change.  Consistent with this, among major European economies the best that is being achieved on a sustained basis is emissions reductions of 10-20% per decade.  While some emissions reductions may now be easier than they were, for example because the costs of renewables have fallen, deeper emissions cuts are likely to be more challenging.  This implies many decades will be required to get down to zero emissions.

All of this emphasises the need to start soon, and keep going. The recent IPCC report emphasised the challenges of meeting a 1.5 degree target.  But even the target of keeping temperature rises below 2 degrees remains immensely difficult.  There is no time to lose.

Adam Whitmore – 23rd October 2018

Notes

[i] This analysis draws on previous work by Stocker and Allen, which I covered a while back here: https://onclimatechangepolicydotorg.wordpress.com/2013/12/06/early-reductions-in-carbon-dioxide-emissions-remain-imperative/

[ii] This is the figure implied in Table 2.2 in http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf.  All references to temperature in this post are to global mean surface temperatures (GMST).

[iii] IPCC Fifth Assessment Report, Synthesis Report, Section 2.2.4 for the range.  The central value is that which appears to have been used to construct Table 2.2 of http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

[iv] The IPCC quotes 0.9 degrees by 2006-2015, which is consistent with 1.0 degrees now.

[v] Table 2.2 of http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

[vi]  http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdfC1.3

[vii] See IPCC 1.5 degree report Chapter 2 for details.

[viii] http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf summary for policy makers, see charts on p.6

[ix] See for example work by Climate Action Tracker https://climateactiontracker.org/global/temperatures/, and and the Stocker and Allan analysis cited as reference (i) above.  The recent IPCC report Chapter 2 Section C1, concludes:  In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO2 emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range). For limiting global warming to below 2°C CO2 emissions are projected to decline by about 20% by 2030 in most pathways (10–30% interquartile range) and reach net zero around 2075 (2065–2080 interquartile range). Non-CO2 emissions in pathways that limit global warming to 1.5°C show deep reductions that are similar to those in pathways limiting warming to 2°C.”  References in this paragraph to pathways limiting global warming to 2C are based on a 66% probability of staying below 2C.

 

 

A limited but important medium term future for CCS

CCS has not yet been implemented on a scale needed to make a substantial difference to climate change.  However it continues to look necessary for the longer term, with more projects necessary to get costs down.

A decade or so ago many people expected rapid development of Carbon Capture and Storage (CCS) as a major contributor to reducing global emissions.  I was one of them – at the time I was working on developing CCS projects.  However, the hoped-for growth has not yet happened on the scale needed to make a material difference to global emissions.

The chart below shows total quantities captured from large CCS projects, including 17 that are already operational and a further 5 under construction.  The quantity of emissions avoided are somewhat lower than the captured volumes shown here due to the CO2 created by the process itself.[i]

Between 2005 and 2020 capture will have grown by only around 25 million tonnes p.a..  This is only 0.07% of annual global CO2 emissions from energy and industry.  In contrast the increase in wind generation in 2017 alone reduced emissions by around 60 million tonnes[ii], so wind power reduce annual emission more from about 5 months’ growth than CCS will from 15 years’ growth – though it took wind power several decades to get to this scale.    

Chart 1: Growth of large CCS projects over time

Source: Analysis based on Global Carbon Capture and Storage Institute database[iii]

The picture gets even less promising looking at the types of projects that have been built.  The chart below shows the proportion of projects, measured by capture volume, in various categories.  The largest component by some distance is natural gas processing – removing the CO2 from natural gas before combustion – which accounts for over 60% of volumes.  This makes sense, as it is often a relatively low cost form of capture, and is often necessary to make  natural gas suitable for use.  However, it will clearly not be a major component of a low carbon energy system.  Much of the rest is chemicals production, including ethanol and fertiliser production.  These are helpful but inevitably small. There are just two moderate size power generation projects and two projects for hydrogen production, which is often considered important for decarbonising heat.

Furthermore, most of the projects separate out CO2 at relatively high concentrations or pressures.  This tends to be easier and cheaper than separating more dilute, lower pressure streams of CO2.  However it will not be typical of most applications if CCS is to become more widespread.

Chart 2:  Large CCS projects by type (including those under construction) 

Source: Analysis based on Global Carbon Capture and Storage Institute database

This slow growth of CCS has been accompanied by at least one spectacular failure, the Kemper County power generation project, which was abandoned after expenditure of several billion dollars.  Neither the circumstances of the development or the technology used on that particular plant were typical.  For example, the Saskpower’s project at Boundary Dam and Petra Nova’s Texas project have both successfully installed post combustion capture at power plants, rather than the gasification technologies used at Kemper County.  Nevertheless, the Kemper project’s failure is likely to act as a further deterrent to wider deployment of CCS in power generation.

There have been several reasons for the slow deployment of CCS.  Costs per tonne abated have remained high for most projects compared with prevailing carbon prices.  These high unit costs have combined with the large scale of projects to make the total costs of projects correspondingly large, with a single project typically having a cost in the billions of dollars.  This has in turn made it difficult to secure from governments the amount of financial support necessary to get more early projects to happen. Meanwhile the costs of other low carbon technologies, notably renewables, have fallen, making CCS appear relatively less attractive, especially in the power sector.

The difficulties of establishing CCS have led many to propose carbon capture and utilisation (CCU) as a way forward.  The idea is that if captured CO2 can be a useful product, this will give it a value and so improve project economics.  Already 80% by volume of CCS is CCU as it includes use of the CO2 for Enhanced Oil Recovery (EOR), with project economics supported by increased oil production.

Various other uses for CO2 have been suggested.  Construction materials are a leading candidate with a number of research projects and start-up ventures in this area.  These are potentially substantial markets.  However the markets for CO2 in construction materials, while large in absolute terms, are small relative to global CO2 emissions, and there will be tough competition from other low carbon materials. For example, one study identified a market potential for CCU of less than two billion tonnes p.a. (excluding synthetic fuels) even on a highly optimistic scenario[iv], or around 5% of total CO2 emissions.  It is therefore difficult to be confident that CCU can make a substantial contribution to reducing global emissions, although it may play some role in getting more early carbon capture projects going, as it has done to date through EOR.

Despite their slow growth, CCS and CCU continue to look likely to have a necessary role in reducing some industrial emissions which are otherwise difficult to eliminate.  The development of CCS and CCU should be encouraged, including through higher carbon prices and dedicated support for early stage technological development.  As part of this it remains important that more projects CCS and CCU projects are built to achieve learning and cost reduction, and so support the beginnings of more rapid growth.  However in view of the lead times involved the scale of CCS looks likely to continue to be modest over the next couple of decades at least.

Adam Whitmore – 25th April 2018

[i] CO2 will generally be produced in making the energy necessary to run the capture process, compression of the CO2 for transport, and the rest of the transport and storage process.  This CO2 will be either emitted, which reduces the net gain from capture, or captured, in which case it is part of the total.  In either case the net savings compared with what would have been emitted to the atmosphere with no CCS are lower than the total captured.

[ii] Wind generation increased by a little over 100 TWh between 2016 and 2017 (Source: Enerdata).  Assuming this displaced fossil capacity with an average emissions intensity of 0.6 t/MWh (roughly half each coal and gas) total avoided emissions would be 60 million tonnes.

[iii] https://www.globalccsinstitute.com/projects/large-scale-ccs-projects

[iv] https://www.frontiersin.org/articles/10.3389/fenrg.2015.00008/full

Five years on

The past five years have given many reasons for optimism about climate change

I have now been writing this blog for just over five years, and it seems timely to step back and look at how the climate change problem appears now compared with five years ago.

In some ways it is easy to feel discouraged.  In the last five years the world has managed to get through about a tenth of its remaining carbon budget, a budget that needs to last effectively forever.

However, in many ways there seem to be reasons for much greater optimism now than five years ago.  Several trends are converging that together make it appear that the worst of the risks of climate change can be avoided.

There is increasing action at the national level to reduce emissions, reinforced by the Paris Agreement …

Legislation is now in place in 164 countries, including the world’s 50 largest emitters.  There are over 1200 climate change and related laws now in place compared with 60 twenty years ago[i].  And this is not restricted to developed countries – many lower income countries are taking action.  Action at national level is being supported around the world by action in numerous cities, regions and companies.

This trend has now been reinforced by the Paris Agreement, which entered into force in November 2016, and commits the world to limiting temperature rises and reducing emissions.

There is increasing evidence of success in reducing emissions …

Many developed countries, especially in Europe, have shown since 1990 that it is possible to reduce emissions while continuing to grow their economies.  Globally, emissions of carbon dioxide from energy and industry have at least been growing more slowly over the past four years and may even have reached a plateau[ii].

Carbon pricing is spreading around the world  …

Among the many policies put in place, the growth of carbon pricing has been especially remarkable.  It has grown from a few small northern European economies 15 years ago to over 40 jurisdictions[iii].  Prices are often too low to be fully effective.  However, carbon pricing has also been shown to work spectacularly well in the right circumstances, as it has in the UK power sector.  And the presence of emissions caps in many jurisdictions gives a strong strategic signal to investors.

Investors are moving out of high carbon sources and in to lower carbon opportunities …

Companies are under increasing pressure to say how their businesses will be affected by climate change and to do something about reducing emissions.  And initiatives such as the Climate Action 100+, which includes over two hundred global investors controlling over $20 trillion of assets, are putting pressure on companies to step up their action.  This will further the trend towards increasing investment in a low carbon economy.  Meanwhile, many funds are divesting from fossil fuels, and vast amounts of capital are already going into low carbon investments.

Falling costs and increasing deployment of renewables and other low carbon technologies …

Solar and wind power and now at scale and continuing to grow very rapidly.  They are increasingly cost-competitive with fossil fuels.  The decarbonisation of the power sector thus looks likely to proceed rapidly, which will in turn enable electrification to decarbonise other sectors.  Electric vehicle sales are now growing rapidly, and expected to account for the majority of light vehicle sales within a couple of decades.  Other technologies, such as LED lighting are also progressing quickly.

This is not only making emissions reductions look achievable, it is making it clear that low carbon technologies can become cheaper than the high carbon technologies they replace, and can build whole new industries as they do.  As a reminder of just how fast things have moved, in the last five years alone, the charts here show global generation from wind and solar since 2000.

Falling costs of low carbon technologies, more than anything else, gives cause for optimism about reducing emissions.  As lower carbon alternatives become cheaper the case for high carbon technologies will simply disappear.

Charts: Global Generation from Wind and Solar 2000 – 2017

Sources:  BP Statistical Review of World Energy, Enerdata, GWEC, IEA

Climate sensitivity looks less likely to be at the high end of the range of estimates …

The climate has already warmed by about a degree Celsius, and some impacts from climate change have been greater than expected.  However, the increase in temperature in response to increasing concentrations of greenhouse gases has so far shown few signs of being towards the top end of the possible range, although we can never rule out the risk of bad surprises.

Taking these trends together there is reason to be cautiously optimistic …

There will still be serious damage from climate change – indeed some is already happening.  And it is by no means clear that the world will act as quickly as it could or should.  And there could still be some nasty surprises in the earth’s reaction to continuing emissions.  Consequently, much effort and not a little luck is still needed to avoid the worst effects of climate change.

But compared with how things were looking five years ago there seem many reasons to believe that things are beginning to move in the right direction.  The job now is to keep things moving that way, and to speed up progress.

Adam Whitmore – 10th April March 2018 

[i] http://www.lse.ac.uk/GranthamInstitute/publication/global-trends-in-climate-change-legislation-and-litigation-2017-update/

[ii] http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674.pdf

[iii] https://openknowledge.worldbank.org/handle/10986/28510

Emissions reductions from carbon pricing can be big, quick and cheap

The UK carbon tax on fuel for power generation provides the most clear-cut example anywhere in the world of large scale emissions reductions from carbon pricing.   These reductions have been achieved by a price that, while higher than in the EU ETS, remains moderate or low against a range of other markers, including other carbon taxes.

The carbon price for fuels used in power generation in the UK consists of two components.  The first is the price of allowances (EUAs) under the EUETS.  The second is the UK’s own carbon tax for the power sector, known as Carbon Price Support (CPS).  The Chart below shows how the level CPS (green bars on the chart) increased over the period 2013 to 2017[i].  These increases led to a total price – CPS plus the price of EUAs under the EUETS (grey bars on the chart) – increasing, despite the price of EUAs remaining weak.

This increase in the carbon price has been accompanied by about a 90% reduction in emissions from coal generation, which fell by over 100 million tonnes over the period (black line on chart).   Various factors contributed to this reduction in the use of coal in power generation, including the planned closure of some plant and the effect of regulation of other pollutants.  Nevertheless the increase in the carbon price since 2014 has played a crucial role in stimulating this reduction in emissions by making coal generation more expensive than gas[ii].  According to a report by analysts Aurora, the increase in carbon price support accounted for three quarters of the total reduction in generation from coal achieved by 2016[iii].

The net fall in emissions over the period (shown as the dashed blue line on chart) was smaller, at around 70 million tonnes p.a. [iv] This is because generation from coal was largely displaced by generation from gas. The attribution of three quarters of this 70 million tonnes to carbon price support implies a little over 50 million tonnes p.a. of net emission reductions due to carbon price support.   This is equivalent to a reduction of more than 10% of total UK greenhouse gas emissions.  The financial value of the reduced environmental damage from avoiding these emissions was approximately £1.6 billion in 2016 and £1.8 billion in 2017[v].

Chart:  Carbon Prices and Emissions in the UK power sector

The UK tax has thus proved highly effective in reducing emissions, producing a substantial environmental benefit[vi].  As such it has provided a useful illustration both of the value of a floor price and more broadly of the effectiveness of carbon pricing.

This has been achieved by a price that, while set at a more adequate level than in the EU ETS, remains moderate or low against a range of other markers, including other carbon taxes.  CPS plus the EUA price was around €26/tCO2 in 2017 (US$30/tCO2).  The French the carbon tax rose from €22/tCO2 to €31/tCO2 over 2016-2017. In Canada for provinces electing to adopt a fixed price the carbon price needs to reach CAN$50/tCO2 (€34/tCO2) by 2022[vii].  These levels remain below US EPA 2015 estimates of the Social Cost of Carbon of around €40/tCO2 [viii].

This type of low cost emissions reduction is exactly the sort of behaviour that a carbon price should be stimulating, but which is failing to happen as a result of the EU ETS because the EUA price is too low.  More such successes are needed if temperature rises are to be limited to those set out in the Paris Agreement.  This means more carbon pricing should follow the UK’s example of establishing an adequate floor price.  This should include an EU wide auction reserve for the EUETS.  The reserve price should be set at somewhere between €30 and €40/t, increasing over time.  This would likely lead to substantial further emissions reductions across the EU.

Adam Whitmore – 17th January 2018

Notes:

[i] Emissions date for 2017 remains preliminary.  UK carbon price support reached at £18/tCO2 (€20/tCO2) in the fiscal year 2015/6 and was retained at this level in 2016/7.  In 2013/4 and 2014/5 levels were £4.94 and £9.55 respectively.  This reflected defined escalation rates and lags in incorporating changes in EUA prices. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/293849/TIIN_6002_7047_carbon_price_floor_and_other_technical_amendments.pdf and www.parliament.uk/briefing-papers/sn05927.pdf

[ii] http://www.theenergycollective.com/onclimatechangepolicy/2392892/when-carbon-pricing-works-2

[iii] https://www.edie.net/news/6/Higher-carbon-price-needed-to-phase-out-UK-coal-generation-by-2025/

[iv] Based on UK coal generation estimated weighted average emissions intensity of 880gCO2/kWh, and 350gCO2/kWh for gas generation.

[v] 50 million tonnes p.a. at a social cost of carbon based on US EPA estimates of $47/tonne (€40/tonne).

[vi] There is a standard objection to a floor in one country under the EUETS is that it does not change of the overall cap at an EU level so, it is said, does not decrease emissions.  However this does not hold under the present conditions of the EUETS, and is unlikely to do so in any case.  A review of how emissions reductions from national measures, such as the UK carbon price floor, do in fact reduce total cumulative emissions over time is provided was provided in my recent post here.

[vii] The tax has now set at a fixed level of £18/tonne.  It was previously set around two years in advance, targeting a total price comprising the tax plus the EUA price.  There was no guarantee that it would set a true floor price, as EUA prices could and did change a good deal in the interim.  Indeed, in 2013 support was set at £4.94/tCO2, reflecting previous expectations of higher EUA prices, leading to prices well below the original target for the year of £16/tCO2 in 2009 prices (around £17.70 in 2013 prices). See https://openknowledge.worldbank.org/handle/10986/28510?locale-attribute=en.  The price is also below the levels expected to be needed to meet international goals (see section 1.2), and below the social cost of carbon as estimated by the US EPA (see https://onclimatechangepolicydotorg.wordpress.com/carbon-pricing/8-the-social-cost-of-carbon/ and references therein).

[viii] Based on 2015 estimates.