Category Archives: climate change

The case for additional actions in sectors covered by the EUETS is now even stronger

Recently agreed reforms to the EUETS mean that excess allowances in the MSR will be cancelled.  This further strengthens the case for actions such as phase-out of coal plant, increasing energy efficiency and deploying more renewables.

About a year ago I looked at whether additional actions to reduce emissions in sectors covered by the EUETS do in practice lead to net emissions reductions over time [i].

It is sometimes claimed that total emissions are always equal to the fixed cap, and by implication additional actions do not reduce total emissions.  This is sometimes called the “waterbed hypothesis” by analogy – if you squeeze in one place there is an equal size bulge elsewhere.

Although often repeated, this claim is untrue.  Under the EU ETS at present the vast majority of emissions reductions from additional actions will be permanently retained, reflecting the continuing surplus of allowances and the operation of the MSR.  Furthermore, over the long term the cap is not fixed, but can respond to circumstances.  For example, tighter caps can be set by policy makers once emissions reductions have been demonstrated as feasible.

When I last looked at this issue, the fate of additional allowances in the MSR remained necessarily speculative.  It was clear that additional excess allowances would at least not return to the market for decades.  It also seemed likely that they would be cancelled.  However, no cancellation mechanism was then defined.

This has now changed with the trilogue conclusions reached last week, which include a limit on the size of the MSR from 2023.  The limit is equal to the previous year’s auction volume, and is likely, given the size of the current surplus, to lead to large numbers of allowances being cancelled in the 2020s.

With this limit in place there is a very clear pathway by which allowances freed up by additional actions, such as reduced coal burn or increased renewables, will add to the surplus, be transferred to the MSR then cancelled (see diagram).  Total emissions under the EUETS will be correspondingly lower.

There is now a clear mechanism by which additional actions reduce total emissions

Modelling confirms that with the limit on the size of the MSR in place a large majority of reductions from non-ETS actions are retained, because additional allowances freed up almost all go into the MSR, and are then cancelled.  This is shown in the chart below for an illustrative case of additional actions which reduce emissions by 100 million tonnes in 2020.  Not all of the allowances freed up by additional actions are cancelled.  First there is a small rebound in emissions due to price changes (see references for more on this effect).  Then, even over a decade, the MSR does not remove them all from circulation.  This is because it takes a percentage of the remainder each year, so the remainder successively decreases, but does not reach zero.  If the period were extended beyond 2030 a larger proportion would be cancelled, assuming a continuing surplus.  Nevertheless over 80% of allowances freed up by additional actions are cancelled by 2030.

The benefit of additional actions is thus strongly confirmed.

The large majority of allowances freed up by additional actions are eventually cancelled

Source: Sandbag

When the market eventually returns to scarcity the effect of additional actions becomes more complex.  However additional actions are still likely to reduce future emissions, for example by enabling lower caps in future.

Policy makers should pursue ambitious programmes of additional action in sectors covered by the EUETS, confident of their effectiveness in the light of these conclusions.  Some of the largest and lowest cost gains are likely to be from the phase out of coal and lignite for electricity generation, which still accounts for almost 40% of emissions under the EUETS.  Continuing efforts to deploy renewables and increase energy efficiency are also likely to be highly beneficial.

Adam Whitmore – 15th November 2017

[i] See https://onclimatechangepolicydotorg.wordpress.com/2016/10/21/additional-actions-in-euets-sectors-can-reduce-cumulative-emissions/  For further detail see https://sandbag.org.uk/project/puncturing-the-waterbed-myth/ .  A study by the Danish Council on Climate Change reached similar conclusions, extending the analysis to the particular case of renewables policy.  See Subsidies to renewable energy and the european emissions trading system: is there really a waterbed effect? By Frederik Silbye, Danish Council on Climate Change Peter Birch Sørensen, Department of Economics, University of Copenhagen and Danish Council on Climate Change, March 2017.

New long term targets for emissions reduction are needed.

The UK and other jurisdictions need to set target dates for reaching net zero greenhouse gas emissions.  These need to be reinforced by new targets for 2060 that are at least close to zero, and by reaffirmed or strengthened targets for 2050.

Ten years ago setting emissions reduction targets for 2050 was a major step forward

2018 sees the tenth anniversary of the UK’s Climate Change Act[i].  This remarkable piece of legislation established a legally binding obligation for the UK to reduce its greenhouse gas emissions by 80% from 1990 levels by 2050, with obligations along the way in the form of five year carbon budgets.  So far progress has been remarkably good, though significant challenges remain.

Other jurisdictions also adopted 2050 targets at around the same time.  In 2005 California also set a target of an 80% reduction from 1990 levels[ii].  In October 2009 the EU established a long term EU goal for reducing emissions by 80-95% from 1990 levels by 2050[iii].

At the time these targets were path breaking.  However, ten years on there are good reasons for reviewing and extending them.

But now the world has moved on …

  • When the targets were established, the period to 2050 seemed long enough to give appropriate strategic guidance to policy makers and investors. However, future dates are now ten years closer.  A 2060 target now gives about the same time horizon for planning as the 2050 targets did when they were established.
  • The Paris Agreement sets targets to limit temperature rises which imply stringent limits on cumulative emissions. It also sets a goal of net zero global emissions in the second half of the century.
  • A fifth or more of the world’s carbon budget that remained in 2008 has since been used up[iv], increasing the urgency of emissions reductions.

Extending targets to reflect these changes would have some clear benefits … 

Together these changes imply a strong case for setting new targets now.

The most compelling target would be a date by which emissions must fall to net zero.  Such a target would make it clear to all sectors that they need to completely decarbonise by a specified date.  At the moment emissions of up to 20% of 1990 levels are allowed even in 2050.  This allows each of those sectors where decarbonisation is more difficult – for example parts of industry, agriculture or residential heating – to largely continue in a belief that there will still be plenty of room for them within the 2050 emissions limit, even though this cannot be true for most sectors.  This in turn allows them to continue to believe they can carry on indefinitely without taking the steps needed to decarbonise.  A date for reaching zero makes it clear this can’t happen.

Setting stringent target for 2060 – at or close to zero – would also give investors in low carbon infrastructure greater confidence, and deter investment in higher carbon alternatives. In the case of the UK and California, a simple extrapolation of their current targets would suggest a 2060 target of a 93% reduction from 1990 by 2050, reaching zero by 2065.

As part of the process of setting these longer term goals the existing 2050 targets need to be at least reaffirmed and preferably tightened.  If this is not done there is the risk that policy makers will simply see the problem as having become more distant, and delay action.  This is the last thing that the climate needs.

2050 targets may also need to be revised …

As a first step, the EU’s target of 80-95% cuts clearly needs to be made more precise.  The current uncertainty of a factor of four in the level of emissions allowed in 2050 is too wide for sensible policy planning.

However the events of the last ten years also raise the question of whether the stringency of the 2050 targets need to be increased, with implications for later periods.  The UK Government’s former Chief Scientific Adviser Sir David King and others have suggested that there is a strong case for the UK seeking to reach net zero emissions by 2050[v].  The difference in cumulative emissions in declining linearly to net zero by 2050 instead of by 2065 is substantial, at a little over 3 billion tonnes – equivalent to about 8 years of current UK emissions.

The goal of reaching zero emissions by 2050 is clearly desirable in many ways.  However there is a risk that it may have unwanted side effects.  The government’s advisory body, the Committee on Climate Change has pointed out that policies are not in yet place even to meet current goals for the fifth carbon budget in around 2030[1].  The route to net zero emissions in 2050 – just over 30 years from now – looks even less clear.  Indeed reaching that goal even by 2065 remains challenging.  If even tighter targets are introduced they may come to be regarded as unrealistic, which may in turn risk weakening commitment to them.  A somewhat slower emissions reduction track may prove a relatively acceptable price to pay for retaining the credibility and integrity of the targets.

Whatever the judgement on this, the need for longer term targets is clear.  Governments need to set dates for reaching net zero emissions.  These need to be supported by targets for 2060 that specify continued rapid reductions in emissions after 2050, and by reaffirmation of 2050 targets, tightening them as necessary.  These new targets will in turn help stimulate the additional actions to rapidly reduce emissions that are ever more urgently needed.

Adam Whitmore – 6th November 2017

 Notes:

[1] https://www.theccc.org.uk/publication/2017-report-to-parliament-meeting-carbon-budgets-closing-the-policy-gap/

[i] https://www.theccc.org.uk/tackling-climate-change/the-legal-landscape/the-climate-change-act/

[ii] https://www.arb.ca.gov/cc/cc.htm

[iii] https://www.consilium.europa.eu/uedocs/complementary measures_data/docs/pressdata/en/ec/110889.pdf

[iv] The calculation is based on data in the IPCC Fifth Assessment Report, Synthesis Report.  This quotes a  cumulative budget of 3700 billion tonnes of CO2 for a two thirds probability of staying below 2 degrees.  Of this 1800 billion tonnes had been used by 2011.  Assuming CO2 emissions of roughly 40 billion tonnes p.a. including land use gives a remaining budget in 2008 of 1920 billion tonnes.  Over the subsequent ten years about 400 million tonnes CO2, which is just over a fifth of 1920 billion tonnes, have been emitted.

[v] http://www.independent.co.uk/environment/ministers-greenhouse-gas-emissions-fail-cut-environment-greg-clark-chief-scientist-david-king-a7969496.html

Prospects for Electric Vehicles look increasingly good

Electric vehicles update

Indicators emerging over the last 18 months increase the likelihood of plug-in vehicles becoming predominant over the next 20 years.  However, continuing strong policy support is necessary to achieve this.

Several indicators have recently emerged for longer term sales of plug-in vehicles (electric vehicles and plug-in hybrids).  These include targets set by governments and projections by analysts and manufacturers.

The chart shows these indicators compared with three scenarios for the growth of plug-in vehicles globally if policy drivers are strong.  (The scenarios are based on those I published around 18 months ago, and have been slightly updated for this post – see the end of this post and previous post for details.) The green lines show the share of sales, and the blue lines show the share of the total vehicle stock.  Other indicators are marked on the chart as diamonds, shown in green as they correspond to the green lines.  I’ve excluded some projections from oil companies as they appear unrealistic.

The scenarios show plug in vehicles sales in 2040 at between just over half and nearly all of new light vehicles.  However the time taken for the vehicle fleet to turn over means that they are a smaller proportion of the fleet, accounting for between a third and about three quarters of the light vehicle fleet by 2040.  The large range of the scenarios reflects the large uncertainties involved, but they all show plug-in vehicles becoming predominant over the next 20 years or so.

The indicators shown are all roughly in line with the scenario range (see detailed notes at the end of this post), giving additional confidence that the scenario range is broadly realistic, although the challenges of achieving growth towards the upper end of the range remain formidable.  Some of the projections by manufacturers and individual jurisdictions are towards the top end of the range, but the global average may be lower.

Chart.  Growth of sales of Plug-in light vehicles

 

The transition will of course need to be accompanied by continuing decarbonisation of the power sector to meet greenhouse gas emissions reduction goals.

Maintaining the growth of electric vehicle sales nevertheless looks likely to require continuing regulatory drivers, at least for the next 15 years or so.  This will include continuing tightening emissions standards on CO2 and NOx and enabling charging infrastructure.  If these things are done then the decarbonisation of a major source of emissions thus now seems well within sight.

Adam Whitmore – 13th October 2017

 

 

Background and notes

This background section gives further information on the data shown on the chart.  In some cases it is unclear from the reports whether projections are for pure electric vehicles only or also include plug-in hybrids.

Developments in regulation

Policy in many countries seems increasingly to favour plug-in vehicles.  Some recent developments are summarised in the table below.   These policy positions for the most part still need to be backed by solid implementation programmes.  Nevertheless they appear to increase the probability that growth will lie within the envelope of the projections shown above, which are intended to correspond to a world of strong policy drivers towards electrification.

Policy developments 

Jurisdiction Policy commitment
UK Prohibit sale of new cars with internal combustion engines by 2040[1]
France Prohibit sale of new cars with internal combustion engines by 2040[2]
Norway All new sales electric by 2025[3]
India All cars electric by 2030 (which appears unrealistic so goal may be modified, for example to new cars)[4]
China Reportedly considering a prohibition on new petrol and diesel.  Date remains to be confirmed, but target is for 20% of the market to be electric by 2025.[5]

 

Sales

The market is currently growing rapidly from a low base.  Total vehicle sales were 0.73 million in 2016, compared with 0.58 million in 2015.  Six countries have reached over 1% electric car market share in 2016: Norway, the Netherlands, Sweden, France, the United Kingdom and China. Norway saw 42% of sales being EVs in June 2017

Manufacturers’ projections

Several manufacturers have issued projections for the share of their sales they expect to be for plug-in vehicles.  Some of these are shown in the table.

Manufacturers’ projections for sales of plug-in vehicles

 

Manufacturer Target/expectation for plug-in vehicles
Volkswagen 20-25% of sales by 2025[6]
Volvo All new models launched from 2019[7]
PSA ( Peugeot and Citroen brands) 80% percent of models electrified by 2023[8]

 

Clearly individual manufacturers’ projections may not be achieved, and to some extent the statements may be designed to reassure shareholders that they are not missing an opportunity.  So far European manufacturers have been slow to develop EVs.  Also these manufacturers may not representative of the market as a whole.  Other companies may progress more slowly.

However others may proceed more quickly.  As has been widely reported, Tesla has taken over 500,000 advanced orders for its Model 3 EV, itself equivalent to almost the entire market for electric vehicles in 2015.  And in line with the Chinese Government’s targets manufacturers in China are expected to increase production rapidly.

Projections by other observers

Projections by other observers are in most cases now in line with the scenairos shown here.

  • Morgan Stanley project 7% of global sales by 2025[9]
  • BNP Paribas project 11% of global sales by 2025, 26% by 2030[10]
  • JP Morgan profject 35% of sales by 2025 and 48% of sales by 2030[11]
  • Last year Bloomberg’s projections showed growth to be slower than with these projections. However they have since updated their analysis, showing 54% of new cars being electric by 2040[12].
  • DNV.GL recently published analysis showing EV’s accounting for half of sales globally by 2033, in line with the mid case in this analysis.

In contrast BP predicts much slower growth in their projections[13].  However BP’s view seems implausibly low in any scenario in which regulatory drivers towards EVs are as strong as they appear to be.  Exxon Mobil gives lower projections still, while OPEC’s are a little above BP’s but still well below the low case shown here.[14].

Notes on changes to projections since May 2016

These projections are updated from my post last year but the differences over the next 15 years are comparatively minor.  The projections are for light vehicles, so exclude trucks and buses.  Note that percentage growth in early years has been faster than shown by the s-curve model – however this is likely to prove a result of the choice of a simple function.  What matters most for emissions reductions is the growth from now and in particular through the 2020s.

Assumption change Rationale
Higher saturation point Continuing advances in batteries reduce the size of the remaining niche for internal combustion engine vehicles
Longer time to saturation The higher saturation point will need additional time to reach.
Somewhat slower growth in total numbers of vehicles Concerns about congestion and changed modes of ownership and use are assumed to lead to lower growth in the total vehicle stock over time.  This tends to make a certain percentage penetrations easier to achieve because the percentage applies to fewer vehicles.

 

 

[1] http://www.bbc.co.uk/news/uk-40723581

[2] http://www.bbc.co.uk/news/world-europe-40518293

[3] http://fortune.com/2016/06/04/norway-banning-gas-cars-2025/

[4] https://electrek.co/2016/03/28/india-electric-cars-2030/

[5] http://www.bbc.co.uk/news/business-41218243

[6] http://www.bbc.co.uk/news/business-36548893

[7] https://www.media.volvocars.com/global/en-gb/media/pressreleases/210058/volvo-cars-to-go-all-electric

[8] http://www.nasdaq.com/video/psa-prepared-for-electric-vehicle-disruption–says-ceo-59b80a969e451049f87653d9

[9] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[10] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[11] https://www.cnbc.com/2017/08/22/jpmorgan-thinks-the-electric-vehicle-revolution-will-create-a-lot-of-losers.html

[12] https://about.bnef.com/electric-vehicle-outlook/

[13] https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html

[14] https://www.economist.com/news/briefing/21726069-no-need-subsidies-higher-volumes-and-better-chemistry-are-causing-costs-plummet-after

A chance to change some dubious climate accounting

The UK should change the way it accounts for emissions under its legally binding carbon budgets, whether or not it remains part of the EUETS.

An apparently technical question about the UK’s accounting for its carbon budgets raises broader questions about alignment of targets and policy instruments.

The UK’s carbon budgets are legally binding obligations under the Climate Change Act (2008) to limit total emissions from the UK.  Checking whether emissions are within the budget ought to be simple.  Measure the UK’s emissions to see if they are at or under budget.  If not there’s a problem.

But it does not work that way.  For sectors not covered by the EUETS actual emissions are indeed used.  However for those sectors covered by the EUETS – power generation and large industry – emissions are deemed always to be equal to the UK’s allocation under the EUETS (which is made up of both auctioned allowances allocated free of charge[1]), whatever emissions are in reality.  Actual emissions from the covered sectors could be much higher and carbon budgets would still be met

While this may sound bizarre, there was a logic to it when the rules were established.  If UK emissions from the traded sector are above the UK’s allocation UK emitters need to buy in EUAs.  If the scheme were short of allowances, as was expected when present accounting rules were set, the additional EUAs bought by UK emitters to cover emissions above the UK’s allocation would lead to reduced supply of EUAs for others.  There would in consequently be reduced emissions elsewhere matching the increased emissions in the UK.  The approach was therefore to some extent a reliable measure of net emissions.  It also aligned with the EUETS having clear National Allocation Plans (NAPs) for EUAs for each Member State, something that no longer exists.

Now this type of accounting no longer makes sense.  With a large surplus of allowances in the EUETS, if the covered sectors in the UK emit more than their budget they will simply buy surplus allowances.  These allowances would otherwise almost all eventually be placed in the Market Stability Reserve (MSR).  Under current proposals (and indeed most likely eventualities), these EUAs would eventually be cancelled.  Additional emissions in the UK are therefore not balanced by reductions elsewhere – they simply result in buying surplus EUAs which would never be used.  This type of situation is sometimes called “buying hot air”.

To avoid this occurring in future, accounting for carbon budgets needs to change to actual emissions.  This will necessarily happen anyway if the UK leaves the EU ETS.  UK allocations under the EUETS will no longer exist. Accounting cannot be based on a non-existent allocation.

But even if the UK stays part of the EU ETS the basis of accounting should change to prevent the UK is meeting its carbon budgets by simply buying in surplus EUAs.

The possibility of buying in surplus to cover UK emissions appears quite real.  UK emissions were above allocation until quite recently.  This was not too serious a problem then, because carbon budgets were being met fairly comfortably anyway.  However the situation may recur under the 2020s and early 2030s under fourth and fifth carbon budgets, which will be much more challenging to meet.  Total UK emissions could be allowed to rise above those carbon budgets simply as a result of an accounting treatment[2].

When a target applies to a jurisdiction that does not wholly align with the policy instrument there will always be a need to consider circumstances in assessing whether targets are being met.  The UK should not be able to meet its carbon budgets simply due to an accounting convention.  Current rules were put in place before the current oversupply under the EUETS arose.  It is no longer fit for purpose.  It should be changed to accounting based on actual emissions whether or not the UK is part of the EUETS.

Adam Whitmore -20th June 2017

[1] This consists of auctioning plus free allowances plus UK allocation under the NER. In Phase 4 it would also include any allocation from the Innovation Fund. Future volumes placed in the MSR and thus excluded from auctioning would also be deducted from the total. If the UK were to leave the EU ETS and backloaded UK allowances currently destined for the MSR were to return to the market this would have a significant effect on measured performance against carbon budgets under current accounting.

[2] Whether this led to total actual emissions being above carbon budgets would depend on the performance of the non-traded sector.

Overcoming the difficulty of acting to reduce emissions

Limiting climate change poses major challenges to traditional decision making, but progress is now being made.

This is the second of two posts stepping back a bit and considering why the climate change problem is so difficult to solve.  My previous post looked at some of the physical feature of the problem such as the scale, dispersion and diversity of emissions.  This post looks more at the economic, social and psychological barriers to action[1].

Perceptions

The first area of difficulty is in perceptions of the facts.  The science of climate change now one of the best established areas of human knowledge.  However a gradual change, for example with temperatures on average increasing by around a fifth of a degree per decade, may be difficult to notice.  Shifting probabilities of extreme events may be similarly difficult to perceive. Consequently, even facts well-established academically may not readily become part of acknowledged personal experience, and so will not be as readily internalised into decidion making.

This may be compounded by an availability bias.  Those regions changing most rapidly and visibly, especially the arctic, are remote and sparsely populated, so changes are less available to people despite the best efforts of reporters.

These difficulties are compounded by a framing effect due to daily or seasonal temperature variation.  A three degree rise in annual global mean surface temperatures may not sound like much if you experience day to day fluctuations of much more than that, even though in reality a change of this magnitude would lead to very severe consequences. As a result of this framing, many of the consequences of climate change may not sound so bad to those not closely involved with the issue.

On the other hand, the risks of some solution may be seen as high – “the lights might go out” – because in many ways the current system works well.  People’s subjective perception of the balance between risk and reward may therefore be quite distorted.

Finally, the perceived solutions to climate change may conflict with some value systems (see here and here), making people less willing to accept what needs to be done.

Lags

The difficulty of action is compounded by long (and uncertain) time lags between cause and effect.  Many consequences, such as the worst effects of sea level rise, are thus seen as belonging to the distant future.  They are beyond the normal planning horizons of governments, companies and most other institutions – though it is worth noting in many cases not outside the lifetime of today’s children.  It also challenges our own individual decision making.  We often have a tendency to concentrate on those problems which seem most urgent.  This makes climate change difficult for people, companies and governments to deal with.

Damage is also often seen as remote in place as well as time.  Most people will tend naturally to be less concerned with changes perceived as unlikely to affect their immediate neighbourhood.

Imperatives from existing social structures

Furthermore, career and other motivating social imperatives are not often aligned with dealing with the climate problem.  A bonus may depend on this year’s profits, or a promotion on generating local value, an election on a more immediate problem.  And social norms may encourage bigger houses, bigger cars and more air travel despite their effect on the climate.  Many people (including me) would be reluctant to live in a smaller house for the sake of the climate.

Governance of a global public good

The most pervasive barrier to action is that emissions and the benefits of the associated activity tend to be largely local, whereas the resulting damage is global.  The global nature of the climate means that a stable climate is a global public good in the economic sense[2].  However this public good must be maintained by avoiding harmful emissions.

As in all such cases, there are incentives for some to free-ride on the efforts of others to support the provision of this public good.  No one country can by itself sustain a stable climate – although China can make a huge difference – but there is no global enforcement mechanism to oblige co-operation.

The ability of any one company or any one individual in influence the outcome is smaller still.  People are right to feel that they alone cannot solve the problem.  There is a need for co-operation at a global level.

Tropical deforestation, a major source of emissions, provides a further difficulty.  It is hard to solve in part because governance is often weak even at the national level in forest countries.  This leads to weak constraints on the actions of companies and individuals, often pursuing their own incentives, which fail to reflect the wider environmental damage.

What happens when these don’t apply

The Montreal Protocol on CFCs offers an interesting contrast, in that it was achieved in part because it lacked some of the characteristics of climate change.  Although the science is complex it could be boiled down to a simple message: “chemicals we are putting into the atmosphere destroy the ozone layer.”  The lags involved were perceived as comfortably within normal human timescales.  And the consequences of failure were easy to present as scary. “If we don’t fix this problem lots more people will get skin cancer” is about as simple and relatable as messages get.

Added to this, the uses of the chemicals were limited to a few sectors of the economy, with readily available substitutes.  This made the costs appear much lower, and opposition from businesses and their allies, some of whom would benefit from regulatory change, much less strong.

The result was relatively prompt and effective action.

A way forward for reducing emissions

This also points a way forward for climate change.  The extension international agreement to limit HFCs because of their effects on the climate is an example of similar forces at work, and is a cause for optimism.  A major threat to the climate has been addressed.  Although not perfect, the agreement appears to have every chance of being successful.  This is despite having many of the barriers to action that hamper all attempts to address climate change.

What was absent was the scale and cost of decarbonising the energy system.  But even here there is progress.  Low carbon technologies are rapidly improving and falling in cost, in some cases to a spectacular degree.  This is lowering the barriers to action, and will do so to an ever increasing extent.  It is creating a powerful constituency for action.  There are now many companies invested in the transition to a lower carbon economy and jobs in low carbon industries increasingly outnumber those in high carbon sectors.  Again this will increase over time.

These trends have combined with the greater political awareness of the problem, and the increasing desire to do something about it, which is embodied in the Paris Agreement. The reactions to statements from the USA of intention to withdraw from in the agreement indicate how solid the international consensus has now become.

While the Paris Agreement provides an overarching framework, the hard work of emissions reductions is now being achieved by a vast and growing range of regulatory interventions across the world.  There is a huge diversity of regulation now in place, from carbon pricing to emissions standards to technology incentives.  Compared with the situation as recently as the beginning of this century progress has been huge.

This is a counsel of optimism, not of complacency or of naiveté about the rate of progress compared with what is needed.  Limiting dangerous climate change will still require a great deal of hard work, and quite a lot of luck.  But progress has been enormous despite formidable barriers, and there is no reason why progress should not continue.

Adam Whitmore – 6th June 2017  

[1] For further discussion of some of the issues raised in this post see file:///C:/Users/Adam/Documents/Book/Research%20material/The_Dragons_of_Inaction_Psychological_Barriers_Tha.pdf .  This is a useful review of psychological barriers, although in my view the author overemphasises the role of individual action.   See also: https://www.apa.org/science/about/publications/climate-change.pdf

[2] A stable climate is non-rival (someone can benefit from it without limiting the ability of others to do so) and non-excludable (there is no way of preventing someone benefiting).  According to the 2009 movie Star Trek this concept of a public good is sufficiently important to be included in the education curriculum on the planet Vulcan.  The reference to the definition using the terms non-rival and non-excludable occurs during the first scene on Vulcan, about 15 minutes into the movie.

Climate change: how did we get here, and why is it so hard to fix? (Part 1)

Activities that cause emissions are ubiquitous, diverse and deeply embedded in modern life.  The world’s energy system is huge and long-lived.  This makes emissions tough to deal with. 

This post is the first of two stepping back a little from the specific topics I usually cover to take a very high level look at why the climate change problem is so hard to fix.  This first post looks at how we got here and (at a very high level) the physical and engineering challenges of addressing the climate change problem.  The next post will consider some of the political and psychological barriers to greater action.

The consequence of industrialisation

The world’s climate was remarkably stable from before the birth of agriculture, some 8-10,000 years ago, until very recent times[1].  Human civilisation grew up in a stable climate, and knew nothing else, despite the calamities caused on occasions by storms, floods, drought, and so forth.

Industrialisation changed this.  There is no single year that definitively marks the beginning of industrialisation, but 1776 probably as good a reference point as any.  It was an eventful year, with the US Declaration of Independence giving history one of its most famous dates, while elsewhere the first edition of Adam Smith’s Wealth of Nations was published and the Bolshoi Theatre opened its first season.  But in the long view of history perhaps more important than any of these was that James Watt’s steam engines began to power industrial production[2].  This, more than any other event, marks the beginning of the industrial era.

In the nearly two and a half centuries since 1776, world population has grown by almost a factor of about 10.  Economic output per person has also grown by a factor of about 10.  Taking these two changes together, the world’s economic activity has increased by a factor of about 100.  This has put huge stresses on a range of natural systems, including the atmosphere[3],[4].

The increase in the use of fossil fuels has been even greater than the increase in industrial activity.  Around 12 million tonnes of fossil fuels, almost entirely coal, were burnt each year before 1776[5].  Today the world burns about 12 billion tonnes of fossil fuels each year, an increase of a factor of 1000[6].

This huge increase in the burning of fossil fuels is now – together with deforestation, agriculture and a few other activities – changing the make-up of the atmosphere on a large scale.  This in turn, is changing the world’s climate.   Within a single human lifetime – just one percent or so of the time since the birth of agriculture – changes to the climate are likely to be much greater than human civilisation has ever before experienced.  The consequences of these changes are likely to be largely harmful, because manmade and natural systems are largely adapted to the world we have, not the one we are making.

The characteristics of the systems that have led to these changes also make the problems hard to address.

The scale of emissions is huge …

The scale of CO2 emitted from the energy system is vast, around 36 billion tonnes p.a.  If this were frozen into solid form as “dry ice” it would cover the whole of Manhattan Island to the depth of about two thirds of the Empire State building.

The system that generates these emissions is correspondingly huge.  The world’s energy system cost tens of trillions of dollars to build, and is correspondingly immensely expensive to replace.

The diversity and dispersion of emissions makes the problem more challenging …

The problem is worse even than its scale alone suggests.  It would be simpler to deal with emissions if they were all in one place, whether Manhattan or elsewhere, and in solid form.  Instead emissions are dispersed across billions of individual sources around the world.  And they come from many different types of activity, from transporting food and powering electronics to heating and cooling homes and offices.  There is no single technology doing one thing to be replaced, but a wide diversity of technologies and applications.

And once emissions get into the atmosphere the greenhouse gases are very dilute.  Carbon dioxide makes up only 400 parts per million (0.04%) of the atmosphere.  Among other things this makes capture of CO2 once it has got into the atmosphere difficult and expensive.

And assets producing emissions are very long lived …

Energy infrastructure often lasts many decades, so changing infrastructure tends to be a long term process, with premature replacement expensive.  And on the whole the existing system does its job remarkably well.  Some political considerations aside, there would be little need for very rapid changes to the system if it were not for climate change and other forms of pollution.

Energy is central to modern life …

Finally it’s not possible to simply switch off the world’s energy system because it is essential to modern life.  Hurricane Sandy disrupted much of New York’s energy system, and the consequences of that gave an indication of how quickly modern life collapses without critical energy infrastructure.

These physical characteristics of the problem are compounded by the political and psychological obstacles to change at the necessary scale.  I will return to these in my next post.

Adam Whitmore – 22nd May 2017

 

[1] This climatically stable period since the end of the last ice age between 11,000 to 12,000 years ago is referred to as the Holocene.  Agriculture started not long after the ice sheets retreated and the world warmed.  Human activity has now led to a new period, referred to as the Anthropocene.

[2]   https://en.wikipedia.org/wiki/Watt_steam_engine.  The first use of the Watt engine to provide the rotary power, which was crucial for factories, was a little later in 1782 at the Soho manufactory near Birmingham.  https://en.wikipedia.org/wiki/Soho_Manufactory.

[3] http://www.scottmanning.com/content/year-by-year-world-population-estimates/

[4] http://www.ggdc.net/maddison/maddison-project/data.htm

[5]Reliable data is obviously hard to come by that far back, but See Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future By Vincenzo Balzani, Nicola Armaroli .  They estimate 10 million tonnes in 1700 and 16 million tonnes by 1815.  The majority of the increase would have been in the later part of this period.  See also Socioecological Transitions and Global Change, edited by Marina Fischer-Kowalski, Helmut Haberl, who quote estimates of 3 million tonnes p.a. in 1700 in the UK, a large proportion of the world total at the time, with little increase to 1776.  This consumption included a few primitive, inefficient steam engines, used mainly for pumping water from coal mines themselves.  The Newcomen steam engine required such large quantities of coal that it was rarely economic to site it away from coal mines.  The Watt engine was more than twice as efficient.

[6] My estimate of the total mass of coal, oil and gas, based on data in BP statistical review of World Energy.