Category Archives: emissions targets

Hydrogen and heat pumps may both play a role in UK building heating

Low carbon hydrogen and electricity via heat pumps may both play a large role in decarbonising building heating in the UK.  Ways forward are needed that maintain optionality around solutions while more is learnt about the right mix.

This is the second of three posts looking at the potential role of hydrogen in residential heating in the UK.

Decarbonising building heating in the UK poses a range of challenges.  First, the required transition is very large scale.  There are around 27 million households in the UK, with many more commercial buildings, small and large.  This implies around a million or more premises a year on average need to be converted to low carbon heat between now and 2050.

Along with scale, there is cost.  Replacing the UK’s heating system is expensive both on in total and by household, even if the existing natural gas network can be used for hydrogen.   This challenge is made more difficult by the high seasonality of heating demand (Chart 1).  Building natural gas supply chains, reformers to produce hydrogen from natural gas, CCS, low carbon electricity and heat pumps all involve major capital investment.  Running this for only part of the year – the colder months – increases unit costs substantially. The chart below shows daily gas and electricity demand from non-daily metered (i.e. small) customers.  Demand for energy from gas, the major source of building heating at present, is about two or three times electricity demand during winter, and is much more seasonal.

Chart 1: Heating demand is highly seasonal …

Source: BEIS (2018) ‘Clean Growth – Transforming Heating’ https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/766109/decarbonising-heating.pdf

Furthermore, the transition to low carbon heat needs to be made largely with the UK’s existing building stock, which is mainly old and often badly insulated.  Improved insulation is a priority in any programme, but there are practical and cost constraints on what can be done with existing buildings.  (Buildings also need to be able to cope with the increased prevalence of heat waves as the climate warms, but that is a separate topic.)

Finally, building heating directly affects people’s day to day lives, so consumers’ acceptance is critical.  On the whole the present system, based mainly on natural gas boilers, works quite well except for its emissions.  Any new system should preferably work as well or better.

The leading candidates for low carbon heating in buildings are electricity, almost certainly using heat pumps to increase efficiency, and low carbon hydrogen.  Biomass seems unlikely to be available either at the scale or cost that would be needed for it to be a major contributor to low carbon heating, though it may find a niche.  District heating networks require low carbon heat and this must draw on the same ultimate set of sources of heat.  Waste heat from nuclear, once discussed as a possibility, no longer seems likely to be either practical or cost effective.

Recently the Committee on Climate Change (CCC) analysed the costs of decarbonising heat in 2050 using different approaches.  They looked at electricity, hydrogen, and combinations of the two.  The analysis concluded that a 50% increase over current costs was likely (Chart 2).  The remarkable thing about the analysis is that this cost was similar for all of the options considered.  Any differences were well within the uncertainty of the estimates.

Chart 2: Costs of different modes for decarbonising building heating …

Source:  Committee on Climate Change

With no large cost difference leading to one or the other option being preferred there is a need to test each option out to see which works better in practice.  Mixed solutions may be appropriate in many cases.  For example, hydrogen may be useful in providing top-up heat even if heat pumps are providing the baseload, or may be the only solution for some poorly insulated properties for which heat pumps don’t run at high enough temperatures.

The CCC’s analysis includes expected cost savings.  The transition to low carbon heat will clearly be more acceptable if this cost can be reduced further.  In particular there seem likely to be both technical advances and large economies of scale in heat pump manufacture and installation, and the costs of low carbon power may fall by more than assumed by the CCC.  As the analysis stands, a 50% increase is clearly politically difficult, especially when there do not seem to be advantages for the customer, and potentially some drawbacks.  However, this is less than a 2% p.a. compound increase in real terms over a 30 year period, which might be politically feasible if introduced gradually spread across all consumers.

With such large changes in demand between summer and winter, seasonal storage is a major issue for reasons of both cost and practicality.  This is an under-researched area, and needs further work.  There are various possibilities – storage of hydrogen itself in salt caverns, storage of hydrogen as ammonia or storage of heat in ground sinks, but each has its problems and the scale involved is very large.

A final uncertainty is the form which hydrogen production will take.  At the moment methane in reformers predominates and, with the addition of CCS, may continue to do so.  However both the costs of low carbon electricity and of the electrolysis are decreasing rapidly.  Over the long term this may become the main pathway for hydrogen production.

These uncertainties imply that building heating poses a particularly difficult set of choices for policy.  It is not clear what route, or mix of routes is the right one.  The transition needs to be quite rapid relative to the lifetimes and scale of existing infrastructure, and it involves the need for consumer acceptance.  There are also potentially strong network and lock in issues.

The best approach is likely to be to develop several types of solution in parallel, maintaining optionality while learning, and being prepared for some approaches to be dead ends.  The implications of this include the need for roll out of low carbon heat sources in some districts now to get an idea of how they will work at scale.

Some of this is happening, much more is needed.

Adam Whitmore -29th October 2019.

 

Comparison of cost estimates with previous analysis by this blog.

Around four and a half years ago I looked at the costs of decarbonising domestic heating in the UK in winter using low carbon electricity.  I concluded that switching to low carbon heat would add 75% or more to domestic heating bills, with some drawbacks for consumers (I also looked at higher cost case, but this case no longer seems likely due to the fall in the costs of low carbon electricity, especially offshore wind, since the analysis was done.)  I suggested that this meant that the transition would be difficult and that reductions in capital costs were necessary.

This analysis is broadly consistent with the CCC analysis quoted here, which suggests a 50% increase on current costs.  The estimates are roughly similar given the large uncertainties involved , the inevitable differences is assumptions, and different basis of the estimates.  In particular the CCC analysis factors in reductions in costs of low carbon heating likely by 2050, whereas my previous analysis was based on current costs to make the point that cost reductions are necessary,  Consequently it would be expected that the CCC analysis would show a smaller cost increase relative to current costs.  Also, the CCC’s analysis may exclude some costs – estimates such as these have a tendency to go up when you look at them more closely.  Equally it may understate the cost reductions possible over decades.

 

 

How well is the UK on track for zero emissions by 2050?

By 2020 the UK will have very nearly halved its emissions over 30 years.  Reducing emissions by the same amount over the next 30 years will get the UK very close to zero.  However this will be very much more difficult.

A robust net zero target has been recommended for the UK …

A recent report by the UK’s Committee on Climate Change (CCC), the Government’s official advisory body, recommends that the UK adopts a legally binding target of net zero emissions of greenhouse gases by 2050[i], that is remaining emissions must be balanced by removal from the atmosphere.  If the Government agrees, this will be implemented by amending the reduction mandated by the Climate Change Act, from an 80% reduction from 1990 to a 100% reduction.

The target has several features that make it particularly ambitious.  It:

  • sets a target of net zero emissions covering all greenhouse gases;
  • includes international aviation and shipping;
  • allows no use of international offsets; and
  • is legally binding.

This is intended to end the UK’s contribution global warming.  It has no precedents elsewhere, although in France a bill with comparable provisions is under consideration[ii].

Progress to date has been good …

The UK has made good progress so far in reducing emissions since 1990.  Emissions in 2018 were around 45% below 1990 levels, having reduced at an average rate of about 12.5 million tonnes p.a. over the period.  On current trends, over the thirty years from 1990 to 2020 emissions will be reduced to about 420 million tonnes p.a., 47% below their 1990 levels.  Emissions will thus have nearly halved over the 30 years 1990 to 2020, half the period from 1990 to the target date of 2050.

Chart 1 shows how the UK’s progress compares with a linear track to the current target of an 80% reduction, to a 95% reduction and to a 100% reduction.  (For simplicity I’m ignoring international aviation and shipping).  The UK is currently on a linear track towards a 95% reduction by 2050.

Chart 1: Actual UK emissions compared with straight line progress towards different 2050 targets

 

Source: My analysis based on data from the Committee on Climate Change and UK Government.  Data for 2018 is provisional[iii]

The largest contributor to the total reduction so far has been the power sector.  Analysis by Carbon Brief[iv] showed that the fall in power sector emissions has been due to a combination deploying renewables, which made up about of third of generation in 2018, reducing coal use by switching to natural gas, and limiting electricity demand growth.

Industrial emissions have also fallen significantly.  However some of this likely represents heavy industry now being concentrated elsewhere in the world, so likely does not represent a fall in global emissions.  Emissions from waste have also fallen, due to better management.

Reducing emissions will be relatively easy in some sectors …

There are also reasons for optimism about continuing emissions reductions.  Many technologies are now there at scale and at competitive prices, which they were not in previous decades.  For example, falling renewables costs and better grid management, including cheaper storage, will help further decarbonisation of the power sector.  Electrification of surface transport now appears not only feasible, but likely to be strongly driven (at least for cars and vans) by economic factors alone as the cost of batteries continues to fall.

But huge challenges remain …

Nevertheless important difficulties remain for complete decarbonisation.

CCS is identified by the report as an essential technology.  However, as I have noted previously, it has made very little progress in recent years in the UK or elsewhere[v].  CCS is especially important for decarbonising industry.  This includes a major role for low carbon hydrogen, which is assumed to be produced from natural gas using CCS – although another possibility is that it comes from electrolysis using very cheap renewables power, e.g. at times of surplus.  CCS also looks to be necessary because of its use with bioenergy (BECCS), to give some negative emissions, though the lifecycle emissions from this will require careful attention

Decarbonising building heating, especially in the residential sector, continues to be a challenge.  The report envisages a mix of heat pumps and hydrogen, perhaps in the form of hybrid designs, with heat pumps providing the baseload being topped-up up by burning of hydrogen in winter.  I have previously written about the difficulties of widespread use of heat pumps[vi], and low carbon hydrogen from natural gas with CCS is also capital intensive to produce and therefore expensive to run for the winter only.  The scale of any programme and consumer acceptance remain major challenges, and the difficulties encountered by the UK’s smart meter installation programme – by comparison a very simple change – are not an encouraging precedent.

Emissions from agriculture are difficult to eliminate completely, and no technologies are likely to be available by 2050 that enable aviation emissions to be completely eliminated.  This will require some negative emissions to balance remaining emissions from these sectors.

Policy needs to be greatly strengthened …

Crucially several of the necessary transformations are very large scale, and need long lead times, and investment over decades.  There is an urgent need to make progress on these, and policy needs to recognise this.  This includes plans for significant absorption from reforestation, as trees need to be planted early enough that they can grow to be absorbing substantial amounts by 2050.

The UK’s progress on emissions reduction so far has been good, having made greater reductions than any other major economy[vii].  And technological advances in some areas are likely to enable substantial further progress.  However much more is needed.  In particular policy needs to look now at some of the difficult areas where substantial long-term investment will be needed

Adam Whitmore – 22nd May 2019

 

 

[i] https://www.theccc.org.uk/2019/05/02/phase-out-greenhouse-gas-emissions-by-2050-to-end-uk-contribution-to-global-warming/

 

[ii] The CCC report notes that Norway, Sweden and Denmark have net zero targets, but they allow use of international offsets (up to 15% in the case of Sweden).  France has published a target similar to the UK’s in a bill.  The European Commission has proposed something similar for the EU as a whole, but this is a long way from being adopted. California has non-legally binding targets to achieve net zero by 2045.  Two smaller jurisdictions (Costa Rica, Bhutan) have established net zero targets but these are expected to be achieved mainly by land use changes.  New Zealand has a draft bill to establish a target, but eliminating all GHGs will be difficult because of the role of agriculture in the New Zealand economy.

 

[iii] https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2018  The change from 2017 to 2018 is applied to the data series from 1990 produced by the CCC (the two data series differ very slightly in their absolute levels).

 

[iv] https://www.carbonbrief.org/analysis-uk-electricity-generation-2018-falls-to-lowest-since-1994

 

[v] https://onclimatechangepolicydotorg.wordpress.com/2018/04/25/a-limited-but-important-medium-term-future-for-ccs/

 

[vi] https://onclimatechangepolicydotorg.wordpress.com/2015/05/18/reducing-the-costs-of-decarbonising-winter-heating-needs-to-be-a-priority/

 

[vii] https://onclimatechangepolicydotorg.wordpress.com/2017/05/09/uk-emissions-reductions-offer-lessons-for-others/

 

The EUETS has not been fully fixed

The reforms introduced to the EUETS for Phase 4 improve its functioning, but without further reform a chronic surplus looks likely and the risk of low prices remains.

The changes to the EUETS that were agreed in late 2017 make significant improvements to its design.  The temporary doubling of the intake rate for the MSR will reduce the surplus in the market more quickly.  And the provision to cancel allowances from the MSR when it exceeds a defined size will avoid the number of allowances in the MSR growing indefinitely.  The price of EUA’s has risen, although they remain below the levels needed to stimulate many efficient emissions reductions.  These changes have led some to conclude that the problems with the EUETS have been resolved.

However, major risks remain.  The cap for Phase 4 (which runs through the 2020s) was set on the basis of an overall reduction in emissions from 1990 levels of 40% by 2030[i].  In practice, emissions now look likely to reach around 50% below 1990 levels by 2030, and possibly to go lower than this if additional policies are put in place.  This looks likely to result in emissions remaining well below the cap throughout Phase 4.

This is illustrated in Chart 1 below, which shows three scenarios included in a recent report by climate NGO Sandbag[ii] (to which I contributed).  The correspond to overall reductions from 1990 levels of 50%-58% by 2030, rather than the 40% reduction on which the cap was set.

Many of the additional emissions reductions are from the sectors covered by the EUETS.  In particular increased renewables and decreased coal and lignite burn in power generation are the largest contributors to reduced emissions.  Consequently, in each scenario emissions remain well below the cap throughout the 2020s.

Even the European Commission’s own modelling suggests a 46% reduction in emissions from 1990 levels now looks likely.  This, while a somewhat smaller decrease than shown in these scenarios, would nevertheless likely result in emissions below the cap throughout the 2020s.

Chart 1: Projected EUETS emissions under three scenarios compared with the cap

Source: Sandbag

With emissions so persistently below the cap the surplus, after decreasing to 2020, begins to grow again, and continues growing to 2030 (see Chart 2).  It does so despite the operation of the MSR.

Chart 2: Projected cumulative surplus under three scenarios

Source: Sandbag

With such a large and persistent surplus there is a clear risk of prices weakening. This is especially the case later in the decade, where reductions in coal use in power generation seem likely to reduce the need for generators to buy emissions as a hedge to cover forward contracts, which may in turn further reduce demand for allowances.

The problem of the chronic surplus arises because the cap is both undemanding and rigid. There are at present no mechanisms for automatically resetting it, and no measures such as price containment which might limit how low prices could go.

The best way to deal with this problem is simply to reduce the cap in around the middle of Phase 4. This would be in line with the principles of the Paris Agreement, which envisages signatories to the Agreement adjusting their commitments over time to bring them more into line with the agreed temperature targets.

Chart 3 shows the effect of resetting the cap in 2026 to match actual emissions.  Under the Base Case the surplus begins to reduce rapidly as a result of the cap being reset.  Such an approach could readily be made consistent with other reforms, such as introducing a price floor in the EUETS.

Chart 3: Effect on the surplus of reducing the cap in 2026 (Base Case)

Source: Sandbag

While the 2017 reforms to the EUETS were a major step forward they are unlikely to prove sufficient.  Further measures will be needed to make sure the EUETS is robust as emissions continue to fall.

Adam Whitmore – 9th April 2019

 

 

 

[i] With a 43% reduction from 2005 levels in the sectors covered by the EUETS.

[ii] https://sandbag.org.uk/wp-content/uploads/2019/03/Halfway-There-March-2019-Sandbag-3.pdf

 

Simple approximations can link emissions and temperature rise

Some simple indicators based on stylised emissions tracks help show clearly the consequences of different rates of emissions reductions.

A simple relationship allows the overall objectives – limiting temperature rises and reducing emissions – to be linked in a straightforward way[i]. Over relevant ranges and timescales temperature rise varies approximately linearly with cumulative emissions of CO2, after adjusting for the effect of other greenhouse gases.  Specifically, for every 3700 GtCO2 emitted (1000GtC) the temperature will rise by about 2.0 degrees[ii] (with estimates in the range 0.8 to 2.5 degrees)[iii].  This is the transient climate response to cumulative emissions (TCRE).

There has been around a 1.0 degree rise in temperatures to date[iv].  This means the remaining total of cumulative emissions (“carbon budget”) needs to be small enough to keep further temperature rises to around 0.5 to 1.0 degrees if it is to meet targets of limiting temperature rises to 1.5 to 2.0 degrees.

The remaining carbon budget for meeting a 1.5 degree target (with 50% probability) is around 770 GtCO2.  The remaining carbon budget for meeting a 2 degree target (again with 50% probability) is 1690 GtCO2[v].  This is illustrated in Chart 1, which shows temperature rise (median estimates) against additional emissions from 2018.

There are many uncertainties in the estimates of the remaining carbon budget.  These include different estimates of the climate sensitivity, variations in warming due non-CO2 pollutants, and the effect of additional earth system feedbacks, including melting of permafrost.  These can each change the remaining carbon budget by around 200GtCO2 or more.

Chart 1: Temperature rise from additional emissions

 

Source: adapted from Table 2.2 in http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

To look at the implications of this simple relationship we can make the following assumptions about future levels of emissions.  These are simplistic, but like all useful simplifications, allow the essence of the issue to be seen more clearly.

  1. Net emissions continue approximately flat at present levels (of around 42 GtCO2a.[vi]) until they start to decrease.
  2. Once net emissions start decreasing they continue decreasing linearly to reach zero – when any continuing emissions are balanced by removals of COfrom the atmosphere. They then continue at zero. There are of course many other emissions tracks leading to the same cumulative emissions.  For example, many scenarios include negative total emissions, that is net removal of carbon dioxide from the atmosphere, in the second half of the century.
  3. Relatively short-lived climate forcings, such as methane, are also greatly reduced, so that they eventually add about 0.15 degrees to warming[vii].

Chart 2 shows various temperature outcomes matched to stylised emissions tracks.  Cumulative emissions are the areas under the curvesTo limit temperatures rises to 1.5 degrees, emissions need to fall to zero by around 2050 starting in 2020, consistent with the estimates in the recent IPCC report[viii].

For limiting temperature rises to 2 degrees with 50% probability, zero emissions must be reached around 2095To reach the 2 degree target with 66% probability emissions need to be reduced to net zero about 20 years earlier – by around 2075 from a 2020 start.  |To reach a target of “well below” 2 degrees is specified in the Paris Agreement emissions must be reduced to zero sooner.

Chart 2: Stylised emissions reduction pathways for defined temperature outcomes (temperatures with 50% and 75% probability)

This simplified approach yields some useful rules of thumb.

Each decade the starting point for emissions reductions is delayed (for example from 2020 to 2030) adds 0.23 degrees to the temperature rise if the subsequent time taken to reach zero emissions is the same (same rate of decrease – i.e. same slope of the line) – see Chart 3 below. This increase is even greater if emissions increase over the decade of delay.  This is a huge effect for a relatively small difference in timing.

Delaying the time taken to get to zero emissions by a decade from the same starting date (for example reaching zero in 2070 instead of 2060) increases eventual warming by 0.11 degrees.

Correspondingly, delaying the start of emissions reductions increases the required rate of emissions reduction to meet a given temperature target.  For each decade of delay in starting emissions reductions the time available to reduce emissions to zero decreases by two decades.  For example, tarting in 2020 gives about 75 years to reduce emissions to zero for a 2 degrees target.  Starting in 2030 gives only 55 years to reduce emissions from current levels to zero once reductions have begun, a much harder task.

Chart 3: Effect of delaying emissions reductions (temperatures with 50% probability)

These results are, within the limits of the simplifications I’ve adopted, consistent with other analysis (see notes at the end for further details)[ix].

How realistic are these goals? Energy infrastructure often has a lifetime of decades, so the system is slow to change.  Consistent with this, among major European economies the best that is being achieved on a sustained basis is emissions reductions of 10-20% per decade.  While some emissions reductions may now be easier than they were, for example because the costs of renewables have fallen, deeper emissions cuts are likely to be more challenging.  This implies many decades will be required to get down to zero emissions.

All of this emphasises the need to start soon, and keep going. The recent IPCC report emphasised the challenges of meeting a 1.5 degree target.  But even the target of keeping temperature rises below 2 degrees remains immensely difficult.  There is no time to lose.

Adam Whitmore – 23rd October 2018

Notes

[i] This analysis draws on previous work by Stocker and Allen, which I covered a while back here: https://onclimatechangepolicydotorg.wordpress.com/2013/12/06/early-reductions-in-carbon-dioxide-emissions-remain-imperative/

[ii] This is the figure implied in Table 2.2 in http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf.  All references to temperature in this post are to global mean surface temperatures (GMST).

[iii] IPCC Fifth Assessment Report, Synthesis Report, Section 2.2.4 for the range.  The central value is that which appears to have been used to construct Table 2.2 of http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

[iv] The IPCC quotes 0.9 degrees by 2006-2015, which is consistent with 1.0 degrees now.

[v] Table 2.2 of http://report.ipcc.ch/sr15/pdf/sr15_chapter2.pdf

[vi]  http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdfC1.3

[vii] See IPCC 1.5 degree report Chapter 2 for details.

[viii] http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf summary for policy makers, see charts on p.6

[ix] See for example work by Climate Action Tracker https://climateactiontracker.org/global/temperatures/, and and the Stocker and Allan analysis cited as reference (i) above.  The recent IPCC report Chapter 2 Section C1, concludes:  In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO2 emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range). For limiting global warming to below 2°C CO2 emissions are projected to decline by about 20% by 2030 in most pathways (10–30% interquartile range) and reach net zero around 2075 (2065–2080 interquartile range). Non-CO2 emissions in pathways that limit global warming to 1.5°C show deep reductions that are similar to those in pathways limiting warming to 2°C.”  References in this paragraph to pathways limiting global warming to 2C are based on a 66% probability of staying below 2C.

 

 

Satellite data can help strengthen policy

Advancing satellite technology can improve monitoring of emissions.  This will in turn help make policies more robust.

There are now around 2000 satellites in earth orbit carrying out a wide range of tasks.  This is about twice as many as only a decade ago[i].   Costs continue to come down, technologies are advancing and more organisations are making use of data, applying new techniques as they do so.   As progress continues, satellite technologies are positioned to make a much larger contribution to monitoring greenhouse gas emissions.

Tracking what’s happening on the ground

Satellites are critical to tracking land use changes that contribute to climate change, notably deforestation.   While satellites have played an important role here for years, the increasing availability of data is enabling organisations to increase the effectiveness of their work.  For example, in recent years Global Forest Watch[ii] has greatly increased the range, timeliness and accessibility of its data on deforestation.  This in turn has enabled more rapid responses.

This is now extending to other monitoring.  For example, progress on construction projects can be tracked over time.  This enabled, for example, monitoring the construction of coal plant in China, which showed that construction of new plants was continuing[iii].

Monitoring operation and emissions

As the frequency with which satellite pictures are taken increases, it becomes possible to monitor not only construction and land use changes, but also operation of individual facilities.  For example, it is now becoming possible to track operation of coal plant, because the steam from cooling towers is visible[iv].  This can in turn allow emissions to be estimated.

More direct monitoring of emissions continues to develop.  Publicly available data at high geographic resolution on NOx, SOx, particulates and in the near future methane[v] are becoming increasingly available[vi].   For example, measuring shipping emissions has traditionally been extremely difficult, but is now becoming tractable, at least for NOx.

Measuring methane is especially important.  Methane is a powerful greenhouse gas with significant emissions from leakage in natural gas systems.  Many of these emissions can easily be avoided at relatively low cost, leading to highly cost-effective emissions reduction.

Monitoring CO2

CO2 is more difficult to measure than other pollutants, in part because it disperses and mixes in the atmosphere so rapidly.  However, some of the latest satellites have sophisticated technology able to measure CO2 concentrations very accurately[vii].  These cover only quite small areas at the moment but are expected to scale up and allow more widespread direct monitoring.  The picture below shows a narrow strip of the emissions from a coal plant in Kansas, based on data from the Orbiting Carbon Observatory 2 (OCO‐2) satellite.  These estimates conform well with reported emissions from the plant.

Figure 1:  Satellite data showing CO2 emissions for a power plant in Kansas

Note: the red arrow shows prevailing wind direction.

Space agencies around the world are now exploring how such monitoring can be taken further.  For example, the EU has now asked the European Space Agency to design a satellite dedicated to monitoring CO2.  It is expected to be operational in the 2020s.[viii]

Work is also underway to improve data analysis, so that quantities of emissions can be attributed to individual plants.  Machine learning holds a good deal of promise here as a way of finding and labelling patterns in the very large amounts of data available.  It is likely soon to be possible to monitor emissions from an individual source as small as a medium size coal plant, taking account of wind speed and direction and so forth.

Implications

These developments will make actions much more transparent and subject to inspection internationally.  Governments, scientists, energy companies, investors, academics and NGOs can monitor what is going on.  Increasingly polluters will not be able to hide their actions – they will be open for all to see.  This is turn will make it easier to bring pressure on polluters to clean up their act, potentially including, for example, holding countries to account for their Nationally Determined Contributions (NDCs) under the Paris Climate Agreement.

Improved transparency and robust data are not in themselves solutions for reducing climate change.  Instead, they play an important role in an effective policy architecture.  And the do so with ever increasing availability and quality.  This gives cause for optimism that policies and their implementation can be made increasingly robust.

Adam Whitmore – 12th September 2018

Thanks to Dave Jones for sharing his knowledge on the topic .

[i] https://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database#.W5Y-7ZNKhcA, https://allthingsnuclear.org/lgrego/new-update-of-ucs-satellite-database,

[ii] https://www.globalforestwatch.org/about

[iii] See here http://www.climatechangenews.com/2018/08/07/china-restarts-coal-plant-construction-two-year-freeze/ for examples

[iv] https://twitter.com/matthewcgray/status/1032251925515968512

[v] http://www.tropomi.eu/data-products/methane

[vi] https://www.scientificamerican.com/article/meet-the-satellites-that-can-pinpoint-methane-and-carbon-dioxide-leaks/

[vii] https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL074702

[viii] https://www.bbc.co.uk/news/science-environment-43926232

 

Fixing the starting price of allowances in an ETS

Fixed price allowances can be a useful way of establishing emissions trading gradually.

I have previously looked at the relative advantages of carbon taxes and emissions trading systems (ETSs), including in the videos on this site.

Among the drawbacks of emissions trading systems is that they tend to be more complex to administer than carbon taxes.  An emissions trading system requires surrender of allowances, which need to be issued, often by both auction and free allocation, and tracked as they are traded.  There is a range of administration needing for this, including maintaining a registry of allowances and ownership.  In contrast, a tax simply requires a payment to be made per tonne emitted.

The administrative cost of emissions trading is unlikely to be a significant proportion of the costs of a system for a large jurisdiction with high administrative capacity, for example the EU.  However it can be daunting for smaller jurisdictions with more limited administrative capacity.  Even a large jurisdiction may be concerned about the time needed to establish an emissions trading system.

There may also be concern about the economic the risks.  For example, there will always be uncertainty about price when the cap is first set.

These difficulties can be reduced by including an initial phase of fixed price allowances.  Under this approach emitters pay a fixed price per tonne.  However rather than simply paying a tax they are required to surrender allowances.  An unlimited number of allowances is available from the regulatory authorities at a fixed price.

This approach has the advantage that it puts in place much of the administrative infrastructure necessary for emissions trading.  Allowances are issued and a registry is established.  From there it is a more straightforward path to limiting the number of allowances to impose a cap, and allowing them to be traded.

It has the further advantage that it can introduce a carbon price, perhaps gradually through and escalating price, and the effect of this can be assessed when setting  a subsequent the cap.  The additional information can further reduce risks.

The Australian example

This approach of issuing fixed price allowances was implemented in Australia, starting in 2012.  An initial 3 year phase was originally planned with emitters required to surrender allowances.  An unlimited number of allowances was available each year at a fixed price.  This was AU$23/tonne in the first year, escalating at 2.5% plus the rate of inflation each year. This was intended to be followed by a transition to an emissions trading system with a cap and a price floor.

The chronology in practice was as follows.  Legislation to introduce carbon pricing was passed in 2011.  The fixed price came into effect ion 1st July 2012, with unlimited allowances available at AU$23/tonne.  Full trading was originally scheduled to being in 2015.  In 2013 it was announced this would be brought forward a year to 2014.  However this did not happen, as the incoming Abbott government, which took office in September 2013, repealed the carbon pricing scheme with effect from July 2014.

In the Australian political context that prevailed at the time the similarity to a tax was seen as a drawback politically.  It allowed the opposition to label it a tax, which the previous government had committed not to introduce.  A very sensible approach was therefore abandoned.  However this was a feature peculiar to Australian politics at the time, and not a more general problem.

The EU and the Western Climate Initiative have both shown that it is possible to establish emissions trading systems directly, without the need to go through an initial fixed price phase (the WCI systems were delayed by a year from their originally intended start date, but have generally worked well since).  And some jurisdictions will choose a tax in any case.

Nevertheless, if there is a desire to put an ETS in place in a way which lowers the initial administrative burden and some of the risks of establishing an ETS, then transitioning to an ETS through issuing fixed price allowances can be a valuable approach.

Adam Whitmore – 13th June 2018

Five years on

The past five years have given many reasons for optimism about climate change

I have now been writing this blog for just over five years, and it seems timely to step back and look at how the climate change problem appears now compared with five years ago.

In some ways it is easy to feel discouraged.  In the last five years the world has managed to get through about a tenth of its remaining carbon budget, a budget that needs to last effectively forever.

However, in many ways there seem to be reasons for much greater optimism now than five years ago.  Several trends are converging that together make it appear that the worst of the risks of climate change can be avoided.

There is increasing action at the national level to reduce emissions, reinforced by the Paris Agreement …

Legislation is now in place in 164 countries, including the world’s 50 largest emitters.  There are over 1200 climate change and related laws now in place compared with 60 twenty years ago[i].  And this is not restricted to developed countries – many lower income countries are taking action.  Action at national level is being supported around the world by action in numerous cities, regions and companies.

This trend has now been reinforced by the Paris Agreement, which entered into force in November 2016, and commits the world to limiting temperature rises and reducing emissions.

There is increasing evidence of success in reducing emissions …

Many developed countries, especially in Europe, have shown since 1990 that it is possible to reduce emissions while continuing to grow their economies.  Globally, emissions of carbon dioxide from energy and industry have at least been growing more slowly over the past four years and may even have reached a plateau[ii].

Carbon pricing is spreading around the world  …

Among the many policies put in place, the growth of carbon pricing has been especially remarkable.  It has grown from a few small northern European economies 15 years ago to over 40 jurisdictions[iii].  Prices are often too low to be fully effective.  However, carbon pricing has also been shown to work spectacularly well in the right circumstances, as it has in the UK power sector.  And the presence of emissions caps in many jurisdictions gives a strong strategic signal to investors.

Investors are moving out of high carbon sources and in to lower carbon opportunities …

Companies are under increasing pressure to say how their businesses will be affected by climate change and to do something about reducing emissions.  And initiatives such as the Climate Action 100+, which includes over two hundred global investors controlling over $20 trillion of assets, are putting pressure on companies to step up their action.  This will further the trend towards increasing investment in a low carbon economy.  Meanwhile, many funds are divesting from fossil fuels, and vast amounts of capital are already going into low carbon investments.

Falling costs and increasing deployment of renewables and other low carbon technologies …

Solar and wind power and now at scale and continuing to grow very rapidly.  They are increasingly cost-competitive with fossil fuels.  The decarbonisation of the power sector thus looks likely to proceed rapidly, which will in turn enable electrification to decarbonise other sectors.  Electric vehicle sales are now growing rapidly, and expected to account for the majority of light vehicle sales within a couple of decades.  Other technologies, such as LED lighting are also progressing quickly.

This is not only making emissions reductions look achievable, it is making it clear that low carbon technologies can become cheaper than the high carbon technologies they replace, and can build whole new industries as they do.  As a reminder of just how fast things have moved, in the last five years alone, the charts here show global generation from wind and solar since 2000.

Falling costs of low carbon technologies, more than anything else, gives cause for optimism about reducing emissions.  As lower carbon alternatives become cheaper the case for high carbon technologies will simply disappear.

Charts: Global Generation from Wind and Solar 2000 – 2017

Sources:  BP Statistical Review of World Energy, Enerdata, GWEC, IEA

Climate sensitivity looks less likely to be at the high end of the range of estimates …

The climate has already warmed by about a degree Celsius, and some impacts from climate change have been greater than expected.  However, the increase in temperature in response to increasing concentrations of greenhouse gases has so far shown few signs of being towards the top end of the possible range, although we can never rule out the risk of bad surprises.

Taking these trends together there is reason to be cautiously optimistic …

There will still be serious damage from climate change – indeed some is already happening.  And it is by no means clear that the world will act as quickly as it could or should.  And there could still be some nasty surprises in the earth’s reaction to continuing emissions.  Consequently, much effort and not a little luck is still needed to avoid the worst effects of climate change.

But compared with how things were looking five years ago there seem many reasons to believe that things are beginning to move in the right direction.  The job now is to keep things moving that way, and to speed up progress.

Adam Whitmore – 10th April March 2018 

[i] http://www.lse.ac.uk/GranthamInstitute/publication/global-trends-in-climate-change-legislation-and-litigation-2017-update/

[ii] http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674.pdf

[iii] https://openknowledge.worldbank.org/handle/10986/28510