Category Archives: carbon pricing

The EUETS has not been fully fixed

The reforms introduced to the EUETS for Phase 4 improve its functioning, but without further reform a chronic surplus looks likely and the risk of low prices remains.

The changes to the EUETS that were agreed in late 2017 make significant improvements to its design.  The temporary doubling of the intake rate for the MSR will reduce the surplus in the market more quickly.  And the provision to cancel allowances from the MSR when it exceeds a defined size will avoid the number of allowances in the MSR growing indefinitely.  The price of EUA’s has risen, although they remain below the levels needed to stimulate many efficient emissions reductions.  These changes have led some to conclude that the problems with the EUETS have been resolved.

However, major risks remain.  The cap for Phase 4 (which runs through the 2020s) was set on the basis of an overall reduction in emissions from 1990 levels of 40% by 2030[i].  In practice, emissions now look likely to reach around 50% below 1990 levels by 2030, and possibly to go lower than this if additional policies are put in place.  This looks likely to result in emissions remaining well below the cap throughout Phase 4.

This is illustrated in Chart 1 below, which shows three scenarios included in a recent report by climate NGO Sandbag[ii] (to which I contributed).  The correspond to overall reductions from 1990 levels of 50%-58% by 2030, rather than the 40% reduction on which the cap was set.

Many of the additional emissions reductions are from the sectors covered by the EUETS.  In particular increased renewables and decreased coal and lignite burn in power generation are the largest contributors to reduced emissions.  Consequently, in each scenario emissions remain well below the cap throughout the 2020s.

Even the European Commission’s own modelling suggests a 46% reduction in emissions from 1990 levels now looks likely.  This, while a somewhat smaller decrease than shown in these scenarios, would nevertheless likely result in emissions below the cap throughout the 2020s.

Chart 1: Projected EUETS emissions under three scenarios compared with the cap

Source: Sandbag

With emissions so persistently below the cap the surplus, after decreasing to 2020, begins to grow again, and continues growing to 2030 (see Chart 2).  It does so despite the operation of the MSR.

Chart 2: Projected cumulative surplus under three scenarios

Source: Sandbag

With such a large and persistent surplus there is a clear risk of prices weakening. This is especially the case later in the decade, where reductions in coal use in power generation seem likely to reduce the need for generators to buy emissions as a hedge to cover forward contracts, which may in turn further reduce demand for allowances.

The problem of the chronic surplus arises because the cap is both undemanding and rigid. There are at present no mechanisms for automatically resetting it, and no measures such as price containment which might limit how low prices could go.

The best way to deal with this problem is simply to reduce the cap in around the middle of Phase 4. This would be in line with the principles of the Paris Agreement, which envisages signatories to the Agreement adjusting their commitments over time to bring them more into line with the agreed temperature targets.

Chart 3 shows the effect of resetting the cap in 2026 to match actual emissions.  Under the Base Case the surplus begins to reduce rapidly as a result of the cap being reset.  Such an approach could readily be made consistent with other reforms, such as introducing a price floor in the EUETS.

Chart 3: Effect on the surplus of reducing the cap in 2026 (Base Case)

Source: Sandbag

While the 2017 reforms to the EUETS were a major step forward they are unlikely to prove sufficient.  Further measures will be needed to make sure the EUETS is robust as emissions continue to fall.

Adam Whitmore – 9th April 2019

 

 

 

[i] With a 43% reduction from 2005 levels in the sectors covered by the EUETS.

[ii] https://sandbag.org.uk/wp-content/uploads/2019/03/Halfway-There-March-2019-Sandbag-3.pdf

 

Increasing the political acceptability of carbon taxes

Straightforward, practical measures can make carbon taxes more acceptable to voters.

Carbon pricing often faces political obstacles due to public opposition …

Carbon pricing has spread widely in recent years, with around 40 systems now in place[i].  However, most emissions are not yet priced, and, even where they are, most prices remain too low.

Both expanding coverage and increasing price levels face political obstacles.  Overcoming these is essential for carbon pricing to play the role that it should in reducing emissions.  Fortunately, evidence is now emerging on what can be done to reduce opposition from voters – overcoming opposition from powerful lobbies such as industry warrants separate approaches.

A study by researchers at the LSE’s Grantham Research Institute, based on reviewing 39 existing empirical analyses, describes people’s objections to carbon pricing and other kinds of environmental taxes, and suggests specific actions to overcome them.  (The study focusses on carbon taxes, and most evidence is from North West Europe and North America, so the conclusions may not extend fully to emissions trading systems or to other cultural contexts.)

The study identifies several reasons people oppose carbon taxes:

  • The personal and wider economic costs of a tax are seen as too high.
  • Carbon taxes are seen as regressive, having a disproportionately negative effect on low-income households.
  • Carbon taxes are not believed to be an effective way to reduce emissions.
  • Governments are seen as having a ‘hidden’ motive to increase fiscal revenue rather than curb emissions.

However the study noted that people’s aversion to carbon taxes decreases over time after they have been introduced, particularly if the effects of the tax are measured and communicated.

There are various design options for reducing public opposition …

The study then identifies a range of measures for addressing the objections

  • Phasing in carbon taxes over time, introducing the tax at a low rate but having commitment devices to subsequently increase the rate to more efficient levels.
  • Redistributing revenues to ameliorate the regressive effects of taxes.
  • Earmarking revenues for emission reduction projects, which is popular with voters and improves the perceived effectiveness of carbon taxes.
  • Ensuring revenue neutrality of carbon taxes.
  • In all cases, policymakers need to gather and communicate the objectives and design of the carbon price to improve trust and credibility, before and after the introduction of a carbon tax. This includes communicating emissions reductions achieved and co-benefits of reductions in other pollutants[ii].

Drawbacks to these options seem limited …

The study notes that these recommendations may diverge from “first best” tax designs recommended in the economics literature.  However, while the study does not assess the implications of this, it is not clear to me that, even where they exist, these divergences are very significant.  They seem to me likely to be easily outweighed by the increased acceptability (a “sub-optimal” carbon tax that can be implemented is usually better than an “optimal” one that can’t).  And there are likely to be benefits often omitted in modelling of “first best” designs. This is especially the case as once a tax is in place it can be modified to over time as experience is gained and acceptance increases.

For example, phasing in a carbon tax is likely to produce economic benefits by reducing economic dislocation due to a price shock from sudden introduction at its full level, which may at least partly counterbalance the inefficiencies from prices being below optimal levels for an initial period.  Similarly, redistribution of revenue to poorer households may provide an economic stimulus benefits as poorer households are more likely to spend the revenue than richer households.  It may also increase social solidarity in ways which are conducive to economic welfare and growth.

Other emissions reductions, for example improving building insulation and deploying new technologies, may be funded at more nearly optimal levels where there are currently restrictions.  However, caution is needed here, and there may often be a stronger case for dispersing funds to citizens.

Revenue neutrality can take different forms.  One approach is to use revenues to reduce other taxes.  This is the approach adopted for the introduction of the carbon tax in British Columbia.  Economists tend to favour this type of approach because existing taxes are seen as distortionary.  However this approach often lacks transparency and credibility even if accompanying tax cuts are publicised – for example if other taxes are reduced they may be increased again in future.  This appears to be one reason why voters tend not to prefer this option.

And the current Canadian experiment with “tax and dividend” approaches appears promising …

A stronger guarantee is provided when revenue is explicitly returned to citizens.  This approach is usually referred to as “tax and dividend” (or “fee and dividend”, or “cap and dividend” in the case of any emissions trading system).  I’ve previously noted the advantages of this approach (see here).  It has been implemented for the Swiss carbon tax in the form of rebates on health insurance costs.  Four provinces in Canada are now working on implementing dividends in the form of direct financial payments to citizens.  This will make most citizens better off as the result of the tax, because they will also benefit from revenue raised from businesses.

There is an argument made in the environmental economics literature that a lump-sum dispersal to citizens is economically suboptimal, because it is better to use funds to reduce other taxes and so reduce distortions.   There is little if any empirical support for this argument as far as I am aware.  But in any case taking a view that citizens have more of a natural claim on property rights to the atmosphere than governments makes the limitation of the argument clear.  From this perspective, not providing citizens with any of the proceeds from pricing emissions is in effect a 100% tax on those proceeds imposed on everyone.  This is indeed non-distortionary – it applies the same tax to everyone irrespective of circumstances – but a fixed per-capita tax is not regarded by governments or their citizens as a good idea anywhere, for sound reasons.

A larger objection to returning all revenue directly to citizens, or using it to reduce current taxes, is that emissions run down natural capital for the benefit of current generations at the expense of future generations.  Intergenerational justice would, as I’ve previously argued (see here and here), be better served by some combination of preserving natural capital and investing revenue from carbon pricing in a “carbon wealth fund” analogous to a sovereign wealth fund.  However this would be unlikely to increase the political acceptability of carbon pricing compared with immediate dispersal of revenues to citizens.

Overall, the study makes a range of recommendation that are well justified on a range of grounds, and seem likely to help establish carbon pricing more widely and effectively.  It is to be hoped that governments everywhere take note of the findings.

Adam Whitmore – 5th March 2019 

Thanks to Maria Carvalho for useful discussions about the background to the study covered by this post.

[i] See the World Bank’s State and Trends of Carbon Pricing report here.  The definition of carbon pricing adopted in that report is quite broad, but even excluding some of the systems included in the report there remain over 40.

[ii] Please see World Bank’s  Guide to Communicating Carbon Pricing here for more information on developing an effective communications strategy.

 

Fixing the starting price of allowances in an ETS

Fixed price allowances can be a useful way of establishing emissions trading gradually.

I have previously looked at the relative advantages of carbon taxes and emissions trading systems (ETSs), including in the videos on this site.

Among the drawbacks of emissions trading systems is that they tend to be more complex to administer than carbon taxes.  An emissions trading system requires surrender of allowances, which need to be issued, often by both auction and free allocation, and tracked as they are traded.  There is a range of administration needing for this, including maintaining a registry of allowances and ownership.  In contrast, a tax simply requires a payment to be made per tonne emitted.

The administrative cost of emissions trading is unlikely to be a significant proportion of the costs of a system for a large jurisdiction with high administrative capacity, for example the EU.  However it can be daunting for smaller jurisdictions with more limited administrative capacity.  Even a large jurisdiction may be concerned about the time needed to establish an emissions trading system.

There may also be concern about the economic the risks.  For example, there will always be uncertainty about price when the cap is first set.

These difficulties can be reduced by including an initial phase of fixed price allowances.  Under this approach emitters pay a fixed price per tonne.  However rather than simply paying a tax they are required to surrender allowances.  An unlimited number of allowances is available from the regulatory authorities at a fixed price.

This approach has the advantage that it puts in place much of the administrative infrastructure necessary for emissions trading.  Allowances are issued and a registry is established.  From there it is a more straightforward path to limiting the number of allowances to impose a cap, and allowing them to be traded.

It has the further advantage that it can introduce a carbon price, perhaps gradually through and escalating price, and the effect of this can be assessed when setting  a subsequent the cap.  The additional information can further reduce risks.

The Australian example

This approach of issuing fixed price allowances was implemented in Australia, starting in 2012.  An initial 3 year phase was originally planned with emitters required to surrender allowances.  An unlimited number of allowances was available each year at a fixed price.  This was AU$23/tonne in the first year, escalating at 2.5% plus the rate of inflation each year. This was intended to be followed by a transition to an emissions trading system with a cap and a price floor.

The chronology in practice was as follows.  Legislation to introduce carbon pricing was passed in 2011.  The fixed price came into effect ion 1st July 2012, with unlimited allowances available at AU$23/tonne.  Full trading was originally scheduled to being in 2015.  In 2013 it was announced this would be brought forward a year to 2014.  However this did not happen, as the incoming Abbott government, which took office in September 2013, repealed the carbon pricing scheme with effect from July 2014.

In the Australian political context that prevailed at the time the similarity to a tax was seen as a drawback politically.  It allowed the opposition to label it a tax, which the previous government had committed not to introduce.  A very sensible approach was therefore abandoned.  However this was a feature peculiar to Australian politics at the time, and not a more general problem.

The EU and the Western Climate Initiative have both shown that it is possible to establish emissions trading systems directly, without the need to go through an initial fixed price phase (the WCI systems were delayed by a year from their originally intended start date, but have generally worked well since).  And some jurisdictions will choose a tax in any case.

Nevertheless, if there is a desire to put an ETS in place in a way which lowers the initial administrative burden and some of the risks of establishing an ETS, then transitioning to an ETS through issuing fixed price allowances can be a valuable approach.

Adam Whitmore – 13th June 2018

Five years on

The past five years have given many reasons for optimism about climate change

I have now been writing this blog for just over five years, and it seems timely to step back and look at how the climate change problem appears now compared with five years ago.

In some ways it is easy to feel discouraged.  In the last five years the world has managed to get through about a tenth of its remaining carbon budget, a budget that needs to last effectively forever.

However, in many ways there seem to be reasons for much greater optimism now than five years ago.  Several trends are converging that together make it appear that the worst of the risks of climate change can be avoided.

There is increasing action at the national level to reduce emissions, reinforced by the Paris Agreement …

Legislation is now in place in 164 countries, including the world’s 50 largest emitters.  There are over 1200 climate change and related laws now in place compared with 60 twenty years ago[i].  And this is not restricted to developed countries – many lower income countries are taking action.  Action at national level is being supported around the world by action in numerous cities, regions and companies.

This trend has now been reinforced by the Paris Agreement, which entered into force in November 2016, and commits the world to limiting temperature rises and reducing emissions.

There is increasing evidence of success in reducing emissions …

Many developed countries, especially in Europe, have shown since 1990 that it is possible to reduce emissions while continuing to grow their economies.  Globally, emissions of carbon dioxide from energy and industry have at least been growing more slowly over the past four years and may even have reached a plateau[ii].

Carbon pricing is spreading around the world  …

Among the many policies put in place, the growth of carbon pricing has been especially remarkable.  It has grown from a few small northern European economies 15 years ago to over 40 jurisdictions[iii].  Prices are often too low to be fully effective.  However, carbon pricing has also been shown to work spectacularly well in the right circumstances, as it has in the UK power sector.  And the presence of emissions caps in many jurisdictions gives a strong strategic signal to investors.

Investors are moving out of high carbon sources and in to lower carbon opportunities …

Companies are under increasing pressure to say how their businesses will be affected by climate change and to do something about reducing emissions.  And initiatives such as the Climate Action 100+, which includes over two hundred global investors controlling over $20 trillion of assets, are putting pressure on companies to step up their action.  This will further the trend towards increasing investment in a low carbon economy.  Meanwhile, many funds are divesting from fossil fuels, and vast amounts of capital are already going into low carbon investments.

Falling costs and increasing deployment of renewables and other low carbon technologies …

Solar and wind power and now at scale and continuing to grow very rapidly.  They are increasingly cost-competitive with fossil fuels.  The decarbonisation of the power sector thus looks likely to proceed rapidly, which will in turn enable electrification to decarbonise other sectors.  Electric vehicle sales are now growing rapidly, and expected to account for the majority of light vehicle sales within a couple of decades.  Other technologies, such as LED lighting are also progressing quickly.

This is not only making emissions reductions look achievable, it is making it clear that low carbon technologies can become cheaper than the high carbon technologies they replace, and can build whole new industries as they do.  As a reminder of just how fast things have moved, in the last five years alone, the charts here show global generation from wind and solar since 2000.

Falling costs of low carbon technologies, more than anything else, gives cause for optimism about reducing emissions.  As lower carbon alternatives become cheaper the case for high carbon technologies will simply disappear.

Charts: Global Generation from Wind and Solar 2000 – 2017

Sources:  BP Statistical Review of World Energy, Enerdata, GWEC, IEA

Climate sensitivity looks less likely to be at the high end of the range of estimates …

The climate has already warmed by about a degree Celsius, and some impacts from climate change have been greater than expected.  However, the increase in temperature in response to increasing concentrations of greenhouse gases has so far shown few signs of being towards the top end of the possible range, although we can never rule out the risk of bad surprises.

Taking these trends together there is reason to be cautiously optimistic …

There will still be serious damage from climate change – indeed some is already happening.  And it is by no means clear that the world will act as quickly as it could or should.  And there could still be some nasty surprises in the earth’s reaction to continuing emissions.  Consequently, much effort and not a little luck is still needed to avoid the worst effects of climate change.

But compared with how things were looking five years ago there seem many reasons to believe that things are beginning to move in the right direction.  The job now is to keep things moving that way, and to speed up progress.

Adam Whitmore – 10th April March 2018 

[i] http://www.lse.ac.uk/GranthamInstitute/publication/global-trends-in-climate-change-legislation-and-litigation-2017-update/

[ii] http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674.pdf

[iii] https://openknowledge.worldbank.org/handle/10986/28510

There should be few reservations about auction reserve prices

The auction reserve price in California has proved successful in maintaining a minimum carbon price.  However it shows the importance for an emissions trading system of political commitment and stability. 

This is the second of two posts looking at experience of carbon price floors.  My previous post looked at UK carbon price support, which guarantees a minimum price by means of a tax.   This post looks at an alternative approach, which is used in California  and the other Western Climate Imitative systems, Quebec and Ontario.  Here, instead of imposing a tax, the floor is set by specifying a reserve price in auctions of allowances.  If bids in auctions stay below the reserve price the allowances are not sold.  Reserve prices such as this are common in practice in many commercial auctions, including those held by major auction houses and online.

Reserve prices give what is often called a “soft” floor.  The market price can go below the auction reserve, but eventually the need to buy allowances at auction is likely to ensure that the price recovers.

The chart below shows the auction reserve price in the California system (green line), which started at $10/tonne in 2012 and is increased each year by 5% plus the rate of inflation.  The California market price (blue line) has generally stayed above this level.  However it did dip below the reserve price for a while in 2016, illustrating that the floor is soft.  This price dip reflected a combination of legal challenges to the system, and political uncertainty about the continuation of the system after 2020, which together reduced the demand for allowances.  Once those uncertainties were resolved the market price recovered.

Chart: Auction reserve prices and market allowance prices in the California cap-and-trade system to end of 2017

Source:  http://calcarbondash.org/ and CARB

The Regional Greenhouse Gas Initiative (RGGI) has similar arrangements but with a much lower reserve price, and there too the price has been above the floor.

The environmental effectiveness of price containment mechanisms depends in large part on what eventually happens to any unsold allowances.  In the case of California this issue particularly affects the upper Price Containment Reserve, from which allowances are released if prices go above defined thresholds.  Allowances from this reserve appear most unlikely to be required in the current phase, as prices seem highly unlikely to reach the threshold levels.  If these unsold allowances in the reserve are cancelled, or otherwise put beyond use, cumulative emissions will be lower.  However if they eventually find their way back into the system, and enable the corresponding quantity of emissions to take place, the environmental benefit may not be realised, or at least not it full.  Some sort of cancellation mechanism is therefore needed, for example cancelling allowances that have been in the reserve for more than a specified number of years.

So price floors can work, however in the case of the California system at least two things need to be agreed as the rules for the system after 2020 are debated this year.

First, continuation of the escalation of the floor price needs be confirmed at least at the current rate, and ideally the rate should be increased.

Secondly, rules for cancelling unsold allowances from the Price Containment Reserve need to be defined.  The cancellation of allowances from the Market Stability Reserve included in the recent reforms to the EUETS sets a valuable precedent in this respect.

The theoretical advantages of a floor price in an ETS are well known.  The experience of auction reserve prices now proving effective in practice over a number of years should encourage other jurisdictions, especially the EU, to introduce similar arrangements.  And those jurisdictions such as California where they are already in place need to continue to develop and enhance them.

Adam Whitmore – 15th February 2018

Emissions reductions from carbon pricing can be big, quick and cheap

The UK carbon tax on fuel for power generation provides the most clear-cut example anywhere in the world of large scale emissions reductions from carbon pricing.   These reductions have been achieved by a price that, while higher than in the EU ETS, remains moderate or low against a range of other markers, including other carbon taxes.

The carbon price for fuels used in power generation in the UK consists of two components.  The first is the price of allowances (EUAs) under the EUETS.  The second is the UK’s own carbon tax for the power sector, known as Carbon Price Support (CPS).  The Chart below shows how the level CPS (green bars on the chart) increased over the period 2013 to 2017[i].  These increases led to a total price – CPS plus the price of EUAs under the EUETS (grey bars on the chart) – increasing, despite the price of EUAs remaining weak.

This increase in the carbon price has been accompanied by about a 90% reduction in emissions from coal generation, which fell by over 100 million tonnes over the period (black line on chart).   Various factors contributed to this reduction in the use of coal in power generation, including the planned closure of some plant and the effect of regulation of other pollutants.  Nevertheless the increase in the carbon price since 2014 has played a crucial role in stimulating this reduction in emissions by making coal generation more expensive than gas[ii].  According to a report by analysts Aurora, the increase in carbon price support accounted for three quarters of the total reduction in generation from coal achieved by 2016[iii].

The net fall in emissions over the period (shown as the dashed blue line on chart) was smaller, at around 70 million tonnes p.a. [iv] This is because generation from coal was largely displaced by generation from gas. The attribution of three quarters of this 70 million tonnes to carbon price support implies a little over 50 million tonnes p.a. of net emission reductions due to carbon price support.   This is equivalent to a reduction of more than 10% of total UK greenhouse gas emissions.  The financial value of the reduced environmental damage from avoiding these emissions was approximately £1.6 billion in 2016 and £1.8 billion in 2017[v].

Chart:  Carbon Prices and Emissions in the UK power sector

The UK tax has thus proved highly effective in reducing emissions, producing a substantial environmental benefit[vi].  As such it has provided a useful illustration both of the value of a floor price and more broadly of the effectiveness of carbon pricing.

This has been achieved by a price that, while set at a more adequate level than in the EU ETS, remains moderate or low against a range of other markers, including other carbon taxes.  CPS plus the EUA price was around €26/tCO2 in 2017 (US$30/tCO2).  The French the carbon tax rose from €22/tCO2 to €31/tCO2 over 2016-2017. In Canada for provinces electing to adopt a fixed price the carbon price needs to reach CAN$50/tCO2 (€34/tCO2) by 2022[vii].  These levels remain below US EPA 2015 estimates of the Social Cost of Carbon of around €40/tCO2 [viii].

This type of low cost emissions reduction is exactly the sort of behaviour that a carbon price should be stimulating, but which is failing to happen as a result of the EU ETS because the EUA price is too low.  More such successes are needed if temperature rises are to be limited to those set out in the Paris Agreement.  This means more carbon pricing should follow the UK’s example of establishing an adequate floor price.  This should include an EU wide auction reserve for the EUETS.  The reserve price should be set at somewhere between €30 and €40/t, increasing over time.  This would likely lead to substantial further emissions reductions across the EU.

Adam Whitmore – 17th January 2018

Notes:

[i] Emissions date for 2017 remains preliminary.  UK carbon price support reached at £18/tCO2 (€20/tCO2) in the fiscal year 2015/6 and was retained at this level in 2016/7.  In 2013/4 and 2014/5 levels were £4.94 and £9.55 respectively.  This reflected defined escalation rates and lags in incorporating changes in EUA prices. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/293849/TIIN_6002_7047_carbon_price_floor_and_other_technical_amendments.pdf and www.parliament.uk/briefing-papers/sn05927.pdf

[ii] http://www.theenergycollective.com/onclimatechangepolicy/2392892/when-carbon-pricing-works-2

[iii] https://www.edie.net/news/6/Higher-carbon-price-needed-to-phase-out-UK-coal-generation-by-2025/

[iv] Based on UK coal generation estimated weighted average emissions intensity of 880gCO2/kWh, and 350gCO2/kWh for gas generation.

[v] 50 million tonnes p.a. at a social cost of carbon based on US EPA estimates of $47/tonne (€40/tonne).

[vi] There is a standard objection to a floor in one country under the EUETS is that it does not change of the overall cap at an EU level so, it is said, does not decrease emissions.  However this does not hold under the present conditions of the EUETS, and is unlikely to do so in any case.  A review of how emissions reductions from national measures, such as the UK carbon price floor, do in fact reduce total cumulative emissions over time is provided was provided in my recent post here.

[vii] The tax has now set at a fixed level of £18/tonne.  It was previously set around two years in advance, targeting a total price comprising the tax plus the EUA price.  There was no guarantee that it would set a true floor price, as EUA prices could and did change a good deal in the interim.  Indeed, in 2013 support was set at £4.94/tCO2, reflecting previous expectations of higher EUA prices, leading to prices well below the original target for the year of £16/tCO2 in 2009 prices (around £17.70 in 2013 prices). See https://openknowledge.worldbank.org/handle/10986/28510?locale-attribute=en.  The price is also below the levels expected to be needed to meet international goals (see section 1.2), and below the social cost of carbon as estimated by the US EPA (see https://onclimatechangepolicydotorg.wordpress.com/carbon-pricing/8-the-social-cost-of-carbon/ and references therein).

[viii] Based on 2015 estimates.

The case for additional actions in sectors covered by the EUETS is now even stronger

Recently agreed reforms to the EUETS mean that excess allowances in the MSR will be cancelled.  This further strengthens the case for actions such as phase-out of coal plant, increasing energy efficiency and deploying more renewables.

About a year ago I looked at whether additional actions to reduce emissions in sectors covered by the EUETS do in practice lead to net emissions reductions over time [i].

It is sometimes claimed that total emissions are always equal to the fixed cap.  By implication additional actions do not reduce total emissions, because if emissions are reduced in one place there will be a corresponding increase elsewhere.  This is sometimes called the “waterbed hypothesis” by analogy – if you squeeze in one place there is an equal size bulge elsewhere.

Although often repeated, this claim is untrue.  Under the EU ETS at present the vast majority of emissions reductions from additional actions will be permanently retained, reflecting the continuing surplus of allowances and the operation of the MSR.  Furthermore, over the long term the cap is not fixed, but can respond to circumstances.  For example, tighter caps can be set by policy makers once emissions reductions have been demonstrated as feasible.

When I last looked at this issue, the fate of additional allowances in the MSR remained necessarily speculative.  It was clear that additional excess allowances would at least not return to the market for decades.  It also seemed likely that they would be cancelled.  However, no cancellation mechanism was then defined.

This has now changed with the trilogue conclusions reached last week, which include a limit on the size of the MSR from 2023.  The limit is equal to the previous year’s auction volume, and is likely, given the size of the current surplus, to lead to large numbers of allowances being cancelled in the 2020s.

With this limit in place there is a very clear pathway by which allowances freed up by additional actions, such as reduced coal burn or increased renewables, will add to the surplus, be transferred to the MSR then cancelled (see diagram).  Total emissions under the EUETS will be correspondingly lower.

There is now a clear mechanism by which additional actions reduce total emissions

Modelling confirms that with the limit on the size of the MSR in place a large majority of reductions from non-ETS actions are retained, because additional allowances freed up almost all go into the MSR, and are then cancelled.  This is shown in the chart below for an illustrative case of additional actions which reduce emissions by 100 million tonnes in 2020.  Not all of the allowances freed up by additional actions are cancelled.  First there is a small rebound in emissions due to price changes (see references for more on this effect).  Then, even over a decade, the MSR does not remove them all from circulation.  This is because it takes a percentage of the remainder each year, so the remainder successively decreases, but does not reach zero.  If the period were extended beyond 2030 a larger proportion would be cancelled, assuming a continuing surplus.  Nevertheless over 80% of allowances freed up by additional actions are cancelled by 2030.

The benefit of additional actions is thus strongly confirmed.

The large majority of allowances freed up by additional actions are eventually cancelled

Source: Sandbag

When the market eventually returns to scarcity the effect of additional actions becomes more complex.  However additional actions are still likely to reduce future emissions, for example by enabling lower caps in future.

Policy makers should pursue ambitious programmes of additional action in sectors covered by the EUETS, confident of their effectiveness in the light of these conclusions.  Some of the largest and lowest cost gains are likely to be from the phase out of coal and lignite for electricity generation, which still accounts for almost 40% of emissions under the EUETS.  Continuing efforts to deploy renewables and increase energy efficiency are also likely to be highly beneficial.

Adam Whitmore – 15th November 2017

[i] See https://onclimatechangepolicydotorg.wordpress.com/2016/10/21/additional-actions-in-euets-sectors-can-reduce-cumulative-emissions/  For further detail see https://sandbag.org.uk/project/puncturing-the-waterbed-myth/ .  A study by the Danish Council on Climate Change reached similar conclusions, extending the analysis to the particular case of renewables policy.  See Subsidies to renewable energy and the european emissions trading system: is there really a waterbed effect? By Frederik Silbye, Danish Council on Climate Change Peter Birch Sørensen, Department of Economics, University of Copenhagen and Danish Council on Climate Change, March 2017.