Category Archives: power generation

The case for additional actions in sectors covered by the EUETS is now even stronger

Recently agreed reforms to the EUETS mean that excess allowances in the MSR will be cancelled.  This further strengthens the case for actions such as phase-out of coal plant, increasing energy efficiency and deploying more renewables.

About a year ago I looked at whether additional actions to reduce emissions in sectors covered by the EUETS do in practice lead to net emissions reductions over time [i].

It is sometimes claimed that total emissions are always equal to the fixed cap, and by implication additional actions do not reduce total emissions.  This is sometimes called the “waterbed hypothesis” by analogy – if you squeeze in one place there is an equal size bulge elsewhere.

Although often repeated, this claim is untrue.  Under the EU ETS at present the vast majority of emissions reductions from additional actions will be permanently retained, reflecting the continuing surplus of allowances and the operation of the MSR.  Furthermore, over the long term the cap is not fixed, but can respond to circumstances.  For example, tighter caps can be set by policy makers once emissions reductions have been demonstrated as feasible.

When I last looked at this issue, the fate of additional allowances in the MSR remained necessarily speculative.  It was clear that additional excess allowances would at least not return to the market for decades.  It also seemed likely that they would be cancelled.  However, no cancellation mechanism was then defined.

This has now changed with the trilogue conclusions reached last week, which include a limit on the size of the MSR from 2023.  The limit is equal to the previous year’s auction volume, and is likely, given the size of the current surplus, to lead to large numbers of allowances being cancelled in the 2020s.

With this limit in place there is a very clear pathway by which allowances freed up by additional actions, such as reduced coal burn or increased renewables, will add to the surplus, be transferred to the MSR then cancelled (see diagram).  Total emissions under the EUETS will be correspondingly lower.

There is now a clear mechanism by which additional actions reduce total emissions

Modelling confirms that with the limit on the size of the MSR in place a large majority of reductions from non-ETS actions are retained, because additional allowances freed up almost all go into the MSR, and are then cancelled.  This is shown in the chart below for an illustrative case of additional actions which reduce emissions by 100 million tonnes in 2020.  Not all of the allowances freed up by additional actions are cancelled.  First there is a small rebound in emissions due to price changes (see references for more on this effect).  Then, even over a decade, the MSR does not remove them all from circulation.  This is because it takes a percentage of the remainder each year, so the remainder successively decreases, but does not reach zero.  If the period were extended beyond 2030 a larger proportion would be cancelled, assuming a continuing surplus.  Nevertheless over 80% of allowances freed up by additional actions are cancelled by 2030.

The benefit of additional actions is thus strongly confirmed.

The large majority of allowances freed up by additional actions are eventually cancelled

Source: Sandbag

When the market eventually returns to scarcity the effect of additional actions becomes more complex.  However additional actions are still likely to reduce future emissions, for example by enabling lower caps in future.

Policy makers should pursue ambitious programmes of additional action in sectors covered by the EUETS, confident of their effectiveness in the light of these conclusions.  Some of the largest and lowest cost gains are likely to be from the phase out of coal and lignite for electricity generation, which still accounts for almost 40% of emissions under the EUETS.  Continuing efforts to deploy renewables and increase energy efficiency are also likely to be highly beneficial.

Adam Whitmore – 15th November 2017

[i] See https://onclimatechangepolicydotorg.wordpress.com/2016/10/21/additional-actions-in-euets-sectors-can-reduce-cumulative-emissions/  For further detail see https://sandbag.org.uk/project/puncturing-the-waterbed-myth/ .  A study by the Danish Council on Climate Change reached similar conclusions, extending the analysis to the particular case of renewables policy.  See Subsidies to renewable energy and the european emissions trading system: is there really a waterbed effect? By Frederik Silbye, Danish Council on Climate Change Peter Birch Sørensen, Department of Economics, University of Copenhagen and Danish Council on Climate Change, March 2017.

Prospects for Electric Vehicles look increasingly good

Electric vehicles update

Indicators emerging over the last 18 months increase the likelihood of plug-in vehicles becoming predominant over the next 20 years.  However, continuing strong policy support is necessary to achieve this.

Several indicators have recently emerged for longer term sales of plug-in vehicles (electric vehicles and plug-in hybrids).  These include targets set by governments and projections by analysts and manufacturers.

The chart shows these indicators compared with three scenarios for the growth of plug-in vehicles globally if policy drivers are strong.  (The scenarios are based on those I published around 18 months ago, and have been slightly updated for this post – see the end of this post and previous post for details.) The green lines show the share of sales, and the blue lines show the share of the total vehicle stock.  Other indicators are marked on the chart as diamonds, shown in green as they correspond to the green lines.  I’ve excluded some projections from oil companies as they appear unrealistic.

The scenarios show plug in vehicles sales in 2040 at between just over half and nearly all of new light vehicles.  However the time taken for the vehicle fleet to turn over means that they are a smaller proportion of the fleet, accounting for between a third and about three quarters of the light vehicle fleet by 2040.  The large range of the scenarios reflects the large uncertainties involved, but they all show plug-in vehicles becoming predominant over the next 20 years or so.

The indicators shown are all roughly in line with the scenario range (see detailed notes at the end of this post), giving additional confidence that the scenario range is broadly realistic, although the challenges of achieving growth towards the upper end of the range remain formidable.  Some of the projections by manufacturers and individual jurisdictions are towards the top end of the range, but the global average may be lower.

Chart.  Growth of sales of Plug-in light vehicles

 

The transition will of course need to be accompanied by continuing decarbonisation of the power sector to meet greenhouse gas emissions reduction goals.

Maintaining the growth of electric vehicle sales nevertheless looks likely to require continuing regulatory drivers, at least for the next 15 years or so.  This will include continuing tightening emissions standards on CO2 and NOx and enabling charging infrastructure.  If these things are done then the decarbonisation of a major source of emissions thus now seems well within sight.

Adam Whitmore – 13th October 2017

 

 

Background and notes

This background section gives further information on the data shown on the chart.  In some cases it is unclear from the reports whether projections are for pure electric vehicles only or also include plug-in hybrids.

Developments in regulation

Policy in many countries seems increasingly to favour plug-in vehicles.  Some recent developments are summarised in the table below.   These policy positions for the most part still need to be backed by solid implementation programmes.  Nevertheless they appear to increase the probability that growth will lie within the envelope of the projections shown above, which are intended to correspond to a world of strong policy drivers towards electrification.

Policy developments 

Jurisdiction Policy commitment
UK Prohibit sale of new cars with internal combustion engines by 2040[1]
France Prohibit sale of new cars with internal combustion engines by 2040[2]
Norway All new sales electric by 2025[3]
India All cars electric by 2030 (which appears unrealistic so goal may be modified, for example to new cars)[4]
China Reportedly considering a prohibition on new petrol and diesel.  Date remains to be confirmed, but target is for 20% of the market to be electric by 2025.[5]

 

Sales

The market is currently growing rapidly from a low base.  Total vehicle sales were 0.73 million in 2016, compared with 0.58 million in 2015.  Six countries have reached over 1% electric car market share in 2016: Norway, the Netherlands, Sweden, France, the United Kingdom and China. Norway saw 42% of sales being EVs in June 2017

Manufacturers’ projections

Several manufacturers have issued projections for the share of their sales they expect to be for plug-in vehicles.  Some of these are shown in the table.

Manufacturers’ projections for sales of plug-in vehicles

 

Manufacturer Target/expectation for plug-in vehicles
Volkswagen 20-25% of sales by 2025[6]
Volvo All new models launched from 2019[7]
PSA ( Peugeot and Citroen brands) 80% percent of models electrified by 2023[8]

 

Clearly individual manufacturers’ projections may not be achieved, and to some extent the statements may be designed to reassure shareholders that they are not missing an opportunity.  So far European manufacturers have been slow to develop EVs.  Also these manufacturers may not representative of the market as a whole.  Other companies may progress more slowly.

However others may proceed more quickly.  As has been widely reported, Tesla has taken over 500,000 advanced orders for its Model 3 EV, itself equivalent to almost the entire market for electric vehicles in 2015.  And in line with the Chinese Government’s targets manufacturers in China are expected to increase production rapidly.

Projections by other observers

Projections by other observers are in most cases now in line with the scenairos shown here.

  • Morgan Stanley project 7% of global sales by 2025[9]
  • BNP Paribas project 11% of global sales by 2025, 26% by 2030[10]
  • JP Morgan profject 35% of sales by 2025 and 48% of sales by 2030[11]
  • Last year Bloomberg’s projections showed growth to be slower than with these projections. However they have since updated their analysis, showing 54% of new cars being electric by 2040[12].
  • DNV.GL recently published analysis showing EV’s accounting for half of sales globally by 2033, in line with the mid case in this analysis.

In contrast BP predicts much slower growth in their projections[13].  However BP’s view seems implausibly low in any scenario in which regulatory drivers towards EVs are as strong as they appear to be.  Exxon Mobil gives lower projections still, while OPEC’s are a little above BP’s but still well below the low case shown here.[14].

Notes on changes to projections since May 2016

These projections are updated from my post last year but the differences over the next 15 years are comparatively minor.  The projections are for light vehicles, so exclude trucks and buses.  Note that percentage growth in early years has been faster than shown by the s-curve model – however this is likely to prove a result of the choice of a simple function.  What matters most for emissions reductions is the growth from now and in particular through the 2020s.

Assumption change Rationale
Higher saturation point Continuing advances in batteries reduce the size of the remaining niche for internal combustion engine vehicles
Longer time to saturation The higher saturation point will need additional time to reach.
Somewhat slower growth in total numbers of vehicles Concerns about congestion and changed modes of ownership and use are assumed to lead to lower growth in the total vehicle stock over time.  This tends to make a certain percentage penetrations easier to achieve because the percentage applies to fewer vehicles.

 

 

[1] http://www.bbc.co.uk/news/uk-40723581

[2] http://www.bbc.co.uk/news/world-europe-40518293

[3] http://fortune.com/2016/06/04/norway-banning-gas-cars-2025/

[4] https://electrek.co/2016/03/28/india-electric-cars-2030/

[5] http://www.bbc.co.uk/news/business-41218243

[6] http://www.bbc.co.uk/news/business-36548893

[7] https://www.media.volvocars.com/global/en-gb/media/pressreleases/210058/volvo-cars-to-go-all-electric

[8] http://www.nasdaq.com/video/psa-prepared-for-electric-vehicle-disruption–says-ceo-59b80a969e451049f87653d9

[9] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[10] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[11] https://www.cnbc.com/2017/08/22/jpmorgan-thinks-the-electric-vehicle-revolution-will-create-a-lot-of-losers.html

[12] https://about.bnef.com/electric-vehicle-outlook/

[13] https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html

[14] https://www.economist.com/news/briefing/21726069-no-need-subsidies-higher-volumes-and-better-chemistry-are-causing-costs-plummet-after

Underestimating the contribution of solar PV risks damaging policy making

Underestimating the contribution of solar PV risks damaging policy making

The continuing lack of realism in projections for solar PV risks damaging policy making by misdirecting effort in developing low carbon technologies.

Solar PV continues its remarkable growth …

Electricity generation from solar PV continues to grow very rapidly.  It now supplies over 1% of global electricity consumption and this proportion looks set to continue growing very rapidly over the next decade as costs continue to fall.

Chart 1 Rapid growth of solar PV generation continues

Sources: BP statistical review of world energy [i].  1% of consumption based on data for generation with an adjustment for losses.

Many studies have underestimated this growth and continue to do so …

This growth has been much faster than many predicted.  In 2013 and again in 2015  I noted[ii] that the IEA’s annual World Energy Outlook (WEO) projections for both wind and solar PV were consistently vastly too low.  Specifically, the IEA’s projections showed the annual rate of installation of wind and solar PV capacity remaining roughly constant, whereas in fact it both were increasing rapidly.  Updated analysis for solar PV recently published by Auke Hoekstra[iii] shows that this position seems remarkably unchanged (see Chart 2).  The repeated gross divergence between forecasts and outturns over so many years makes it hard to conclude anything other than the IEA is showing a wilful disconnection with reality in this respect, though their historical data on the energy sector remains very valuable.

Chart 2:  IEA projections for solar PV capacity continue to vastly underestimate growth

Although the IEA’s projections are particularly notable for their inability to learn from repeated mistakes, others have also greatly underestimated the growth of solar PV[iv].    Crucially, as a recent study in Nature Energy[v] shows, this tendency extends to many energy models used in policy making, including those relied on by the IPCC in its Assessment Reports.

This is largely because models have underestimated both the effect of policy support on deployment and the rate of technological progress, and so have underestimated the resulting falls in cost both in absolute terms and relative to other technologies.  Where new information has been available there has often been a lag in incorporating it in models.  Feedbacks between cost falls, deployment and policy may also have been under-represented in many models.  Consequently models have understated both growth rates and ultimate practical potential for solar PV.

This damages policy making  …

Does this matter?  I think it does, for at least two reasons.

First, if policy is based on misleading projections about the role of different technologies then policy support and effort will likely be misdirected.  For example, means of integrating solar PV at very large scale into energy systems look to have been under-researched and under-supported.  Other low carbon technologies such as power generation with CCS may have received more attention in comparison to their potential[vi].

Second, there is a risk of damaging the policy debate.  In particular there is a risk of exacerbating polarisation of the debate, rather than creating a healthy mix of competing judgements.  There is already a tendency for some commentaries on energy to favour fossil energy sources, and perhaps nuclear, and for others to favour renewables – what one might call “traditionalist” and “transitionalist” positions.  Traditionalists, including many energy companies, tend to point to the size and inertia of the energy system and the problems of replacing the current system with new sources of energy.  Transitionalists, including many entrepreneurs and environmentalists, tend to emphasise the urgent need to reduce emissions, the speed of change in technologies and costs now underway, and the exciting business opportunities created by change.

Both perspectives have merit, and the debate is too important to ignore either.  The IEA provides an example of distorting the debate. It will naturally, due to its history, tend to be seen as to some extent favouring the traditionalist viewpoint.  If this perception is reinforced by grossly unrealistic projections for renewables it risks devaluing the IEA’s other work even when it is more realistic, leaving it on one side of the debate. An opportunity for a balanced contribution from a major institution is lost.  The debate will be more polarised as a result, risking misleading policy makers, and distorting policy choices.

Securing balanced, well informed debate on the transition to a low carbon energy system is quite challenging enough.  Persistently underestimating the role of a major technology does not help.

Adam Whitmore -26th September 2017

 

 

[i] http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-renewable-energy.pdf

[ii] For details see here, here and  here

[iii]  https://steinbuch.wordpress.com/2017/06/12/photovoltaic-growth-reality-versus-projections-of-the-international-energy-agency/

[iv] An exception, as I have previously noted is work by Greenpeace.  Some previous scenario work by Shell was also close on wind and solar, but greatly overestimated the role of CCS and biofuels.

[v] The Underestimated Potential for Solar PV Energy to Mitigate Climate Change, Creutzig et. a. Nature Energy, Published 28/08/17

[vi] CCS still looks essential for decarbonisation in some cases, and given lead times for its development continued research and early deployment is still very much needed.  This is especially so for industrial applications.  Deployment in power generation looks likely to be more limited over the next decade or more, though some may still be needed when to move to very low emissions, and eventually to zero net emissions.  However the contribution of CCS to power generation now looks likely to be much less than that from solar PV.

A chance to change some dubious climate accounting

The UK should change the way it accounts for emissions under its legally binding carbon budgets, whether or not it remains part of the EUETS.

An apparently technical question about the UK’s accounting for its carbon budgets raises broader questions about alignment of targets and policy instruments.

The UK’s carbon budgets are legally binding obligations under the Climate Change Act (2008) to limit total emissions from the UK.  Checking whether emissions are within the budget ought to be simple.  Measure the UK’s emissions to see if they are at or under budget.  If not there’s a problem.

But it does not work that way.  For sectors not covered by the EUETS actual emissions are indeed used.  However for those sectors covered by the EUETS – power generation and large industry – emissions are deemed always to be equal to the UK’s allocation under the EUETS (which is made up of both auctioned allowances allocated free of charge[1]), whatever emissions are in reality.  Actual emissions from the covered sectors could be much higher and carbon budgets would still be met

While this may sound bizarre, there was a logic to it when the rules were established.  If UK emissions from the traded sector are above the UK’s allocation UK emitters need to buy in EUAs.  If the scheme were short of allowances, as was expected when present accounting rules were set, the additional EUAs bought by UK emitters to cover emissions above the UK’s allocation would lead to reduced supply of EUAs for others.  There would in consequently be reduced emissions elsewhere matching the increased emissions in the UK.  The approach was therefore to some extent a reliable measure of net emissions.  It also aligned with the EUETS having clear National Allocation Plans (NAPs) for EUAs for each Member State, something that no longer exists.

Now this type of accounting no longer makes sense.  With a large surplus of allowances in the EUETS, if the covered sectors in the UK emit more than their budget they will simply buy surplus allowances.  These allowances would otherwise almost all eventually be placed in the Market Stability Reserve (MSR).  Under current proposals (and indeed most likely eventualities), these EUAs would eventually be cancelled.  Additional emissions in the UK are therefore not balanced by reductions elsewhere – they simply result in buying surplus EUAs which would never be used.  This type of situation is sometimes called “buying hot air”.

To avoid this occurring in future, accounting for carbon budgets needs to change to actual emissions.  This will necessarily happen anyway if the UK leaves the EU ETS.  UK allocations under the EUETS will no longer exist. Accounting cannot be based on a non-existent allocation.

But even if the UK stays part of the EU ETS the basis of accounting should change to prevent the UK is meeting its carbon budgets by simply buying in surplus EUAs.

The possibility of buying in surplus to cover UK emissions appears quite real.  UK emissions were above allocation until quite recently.  This was not too serious a problem then, because carbon budgets were being met fairly comfortably anyway.  However the situation may recur under the 2020s and early 2030s under fourth and fifth carbon budgets, which will be much more challenging to meet.  Total UK emissions could be allowed to rise above those carbon budgets simply as a result of an accounting treatment[2].

When a target applies to a jurisdiction that does not wholly align with the policy instrument there will always be a need to consider circumstances in assessing whether targets are being met.  The UK should not be able to meet its carbon budgets simply due to an accounting convention.  Current rules were put in place before the current oversupply under the EUETS arose.  It is no longer fit for purpose.  It should be changed to accounting based on actual emissions whether or not the UK is part of the EUETS.

Adam Whitmore -20th June 2017

[1] This consists of auctioning plus free allowances plus UK allocation under the NER. In Phase 4 it would also include any allocation from the Innovation Fund. Future volumes placed in the MSR and thus excluded from auctioning would also be deducted from the total. If the UK were to leave the EU ETS and backloaded UK allowances currently destined for the MSR were to return to the market this would have a significant effect on measured performance against carbon budgets under current accounting.

[2] Whether this led to total actual emissions being above carbon budgets would depend on the performance of the non-traded sector.

The constrained role of biomass

The role of biomass in the world energy system looks likely to be constrained, so there will be a need to focus on high value applications where there are few low-carbon alternatives.

This is the second of two posts looking at the role of biomass.  Here I focus on potential resource constraints.

A wide range of possibilities

The amount of biomass available to provide energy depends a lot on the amount of land available to grow energy crops, and how much that land can yield.   Different assumptions on these variables produce quite different estimates of the total resource, and numerous studies over the years have produced a wide range of results.    The amount of waste biomass available also matters, but potential availability from this source is smaller.

A comprehensive review of estimates of the biomass resource was carried out two years ago by researchers at Imperial College[i] (see chart).  It showed a variation in estimates of a factor of around 40, from of the order of 30 EJ to over 1000 EJ (1EJ =1018 J, or a billion GJ, or 278 TWh).  This compares with total world primary energy demand of just under 600 EJ, transport demand of around 100 EJ, and at least 250 EJ to produce present levels of electricity, assuming biomass combustion to remain relatively inefficient[ii].

Estimates of available biomass resource

biomass chart processed

Source: Slade et. al. (2014)

The authors examine reasons for differences in estimates, which I’ve summarised in the table below.  The differences are largely assumption driven, because the small scale of commercial bioenergy at present provides little empirical evidence about the potential for very large scale bioenergy, and future developments in food demand and other factors are inevitably uncertain.

Reasons for variation in estimates of total biomass supply

Range Typical assumptions
Up to 100EJ Limited land available for energy crops, high demand for food, limited productivity gains in food production, and existing trends for meat consumption.  Some degraded or abandoned land is available.
100-300 EJ Increasing crop yields keep pace with population growth and food demand, some good quality agricultural land is made available for energy crop production, along with 100-500Mha of grassland, marginal, degraded and deforested land
300-600EJ Optimistic assumptions on energy crop availability, agricultural productivity outpaces demand, and vegetarian diet
600 EJ + Regarded as extreme scenarios to test limits of theoretical availability

 

Reasons for caution

In practice there seem to me to be grounds for caution about the scale of the available resource, although all of these propositions require testing, including through implementation of early projects.

Land Availability

  • There will rightly be emphasis on protection of primary forest on both carbon management and biodiversity grounds, with some reforestation and rewilding.
  • There is little evidence of a shift away from meat consumption. With the exception of India, less than 10% of people in  most countries are vegetarian despite many years of campaigning on various grounds[iii].   In China meat consumption is associated with rising living standards.
  • Demand for land for solar PV will be significant, although a good deal of this will be on rooftops and in deserts

Yield

  • The nitrogen cycle is already beyond its limit, constraining the role of fertiliser, and water stress is a serious issue in many places (agriculture accounts for 70% of current fresh water use). The UN Food and Agriculture Organisation has projected fairly modest increases in future yields.

Policy support

  • Difficulties in limiting lifecycle emissions from biofuels are likely to lead to caution about widespread deployment.
  • Concerns about food security may limit growth of biofuels.

Small scale to date, despite many years of interest

  • There has been little progress to date compared with other low carbon technologies. Though traditional biofuels remain widely used, modern biofuels account for a very small proportion of demand at present.  World biofuels consumption currently accounts for only 0.2% of world oil consumption[iv] .  Many biofuels programmes have had subsidies cut and there is still limited private sector investment.

In this context some estimates of the potential for biomass to contribute to energy supply seem optimistic.  For example, Shell’s long-term scenarios (Oceans and Mountains) show biomass of 74 EJ and 87 EJ respectively for commercial biomass, 97-133 EJ including traditional biomass by 2060[v].  These totals are towards or above the more cautious estimates for the resource that might ultimately be available (see table above).  A recent review article[vi]  suggested that by 2100 up to 3.3 GtCp.a. (around 12 billion tonnes of CO2) could be being removed, and producing around 170EJ of energy.  However the land requirements for this are very large at about 10% of current agricultural land.  The authors suggest instead a mean value for biomass potential of about a third of that, or 60EJ.

On balance it seems that biomass is likely to account for at most less than 10% of commercial global energy (likely to be around 800-900EJ by mid-century), and potentially much less if land availability and difficulties with lifecycle emissions prove intractable.

It thus seems likely that biomass energy will be relatively scarce, and so potentially of high value.  This in turn suggests it is likely to be mainly used in applications where other low carbon alternatives are unavailable.  These are not likely to be the same everywhere, but they are likely often to include transport applications, especially aviation and likely heavy trucking, and perhaps to meet seasonal heat demand in northern latitudes.  For example, according to Shell’s scenarios aviation (passengers + freight) is expected to account for perhaps 20-25EJ by 2050, and biomass could likely make a useful contribution to decarbonisation in this sector.

None of this implies that biomass is unimportant, or has no role to play.  It does imply that policies focussing on deploying other renewable energy sources at large scale, including production of low carbon electricity for transport, will be essential to meeting decarbonisation targets.  And the optimum use of biomass will require careful monitoring and management.

Adam Whitmore  – 11th April 2016

 

[i] Slade et.al., Global Bioenergy Resources, Nature Climate Change February 2014

[ii] Data on final consumption and electricity production from Shell and IEA data.  35% efficiency for biomass in electricity is assumed, which is likely to be somewhat optimistic, especially if CCS is employed.

[iii] https://en.wikipedia.org/wiki/Vegetarianism_by_country

[iv] BP Statistical Review of World Energy

[v] http://www.shell.com/energy-and-innovation/the-energy-future/shell-scenarios.html  These totals include biofuels, gasified biomass and biomass waste solids, and traditional biomass.

[vi] Smith et. al., Biophysical and economic limits to negative CO2 emissions, Nature Climate Change, January 2016.  The paper estimates land requirement for 170 EJ of 380-700 Mha, around 10% of total agricultural land area in 2000 of 4960Mha.

Deploying CCS on fossil fuel plant is more of a priority than implementing negative emissions technologies

The potential for biomass with CCS and direct air capture of CO2 should not distract from deployment of CCS on fossil fuel plants over the next few decades.  Among other things, learning from CCS on fossil fuels will help make eventual deployment of CCS on biomass cheaper and more effective.

There appears to be increasing likelihood that atmospheric concentrations of greenhouse gases will grow to exceed levels consistent with the target specified in the recent UNFCCC Paris agreement of limiting temperature rises to “well below” two degrees.  Such an outcome would require CO2 to be removed from the atmosphere faster than natural sinks allow, in order to restore concentrations to safe levels.  Near zero net emissions in the latter part of this century will also be needed to stabilise concentrations.

Many models of future emissions pathways now show negative emissions technologies (technologies that result in a net decrease in CO2 in the atmosphere) needing to play a major role for in meeting climate goals. They have the potential to remove carbon dioxide from the atmosphere in the event of “overshoot” of target atmospheric concentrations, and to balance remaining emissions from sectors where abatement is difficult with a view to achieving net total emissions of close to zero.  But the application of such technologies should not be considered in isolation.

Bio Energy with CCS (BECCS)

Bio energy with CCS (BECCS ) is the most widely discussed approach to negative emissions.  BECCS is not a single technology but a combination of two major types of CO2 removal.  Bioenergy from burning biomass to generate electricity or heat emits a substantial amount of CO2  on combustion – around as much as a coal plant.  However much of this can be captured using CCS.  More carbon dioxide is reabsorbed over time by the regrowth of the plants, trees – or perhaps algae – that have been harvested to produce the bioenergy.  Together, the capture of the CO2 from the flue gas and the subsequent absorption of CO2 from the atmosphere by regrowth of biomass can lead to net removal of CO2 from the atmosphere, although this takes time.  (The net amount of CO2, that is emitted on a lifecycle basis from burning biomass without CCS depends on the type of biomass and is subject to considerable variation and uncertainty – a controversial topic that would need another post to review.)

However at an energy system level, where the CO2 is captured – biomass plant or fossil fuel plant – is less relevant than the total amount that’s captured.  Broadly speaking, if there is a biomass plant and fossil fuel plant both running unabated the same benefit can be achieved by capturing a tonne of CO2 from either.

Indeed there may be advantages to putting CCS on a conventional plant rather than biomass plant.  It may be technically more tractable.  Furthermore, CCS require a lot of energy to capture the CO2 and then to compress and pump it for permanent storage.  Biomass is likely to be supply constrained (again, this is an issue that requires a post in itself), so using biomass rather than fossil fuels to provide this energy may limit other applications.  Only when there are no fossil fuel plants from which to capture CO2 does biomass plant become unambiguously a priority for CCS.  This is clearly some way off.

Furthermore biomass with CCS for electricity generation may not be the best use of bioenergy.  Converting sunlight to bioenergy then turning that into electricity is a very inefficient process.  Typically only 1-2% of the sunlight falling on an area of cropland ends up as useful chemical energy in the form of biofuels.  There are various reasons for this, not least of which is that photosynthesis is a highly inefficient process.  Burning biomass to make electricity adds a further layer of inefficiency, with only perhaps a third or less of the energy in the biomass turned into electricity.  Sunlight therefore gets converted to electricity with an efficiency of perhaps 0.5%.  This compares with around 15- 20% for solar cells, implying that scarce land is often likely to be best used for solar PV.  (The calculation is closer if solar PV is used to create storable energy e.g. in the form of hydrogen).   For similar reasons the use of biofuels rather than electricity in transport is inefficient, in part because internal combustion engines are less efficient than electric motors.

Limited available biomass may be better used for those applications where it is the only available lower carbon energy source, notably in aviation and (likely) heavy trucks, or for other applications such as district heating with CCS, where the ability to store energy seasonally is especially valuable.

At the very least, detailed system modelling will be required to determine the optimal use of biomass.  Suggesting that BECCS should have a major role to play simply because in isolation it has negative emissions may lead to suboptimal choices.

Direct Air Capture (DAC)

Direct Air Capture (DAC), where carbon dioxide is chemically absorbed from the atmosphere and permanently sequestered, can also reduce the stock of CO2 in the atmosphere.  However the typical concentration of CO2 in a flue gas of a power plant or industrial plant is several percent, about a hundred times as great as the concentration of 0.04% (400 ppm) found in the atmosphere.  This makes the capture much easier.  Furthermore, millions of tonnes can be captured and piped from a single compact site using CCS, generating economies of scale on transport and storage.  In contrast DAC technology tends to be more diffuse.  These considerations imply that CCS from power plants and industrial facilities is always likely to be preferable to direct air capture until almost all the opportunities for CCS have been implemented, which again is a very long way off.

Uncertainties and optionality

There are many uncertainties around negative emissions technologies, including the availability of biomass, cost, and the feasibility of reducing emissions in other sectors.  For these reasons developing optionality remains valuable, and research to continue to develop these options, including early trial deployment, is needed, as others have argued[i].

One of the best ways of developing optionality is to deploy CCS at scale on fossil fuel plants.  This will reduce the costs and enable the development of improved technologies through learning on projects.  It will also help build infrastructure which can in turn benefit  BECCS.  This needs to run in parallel with ensuring that the lifecycle emissions from the bioenergy production chain are reduced and biodiversity is safeguarded.

Negative emissions technologies may well have a role to play in the latter part of the century.  But they seem likely to make more sense when the economy is already largely decarbonised.  In the meantime deployment of CCS, whether on industrial facilities or power plants, needs to be a much greater priority.

Adam Whitmore – 21st March 2016

[i] Investing in negative emissions, Guy Lomax,  Timothy M. Lenton,  Adepeju Adeosun and Mark Workman, Nature Climate Change 5, 498–500 (2015)  http://www.nature.com/nclimate/journal/v5/n6/full/nclimate2627.html?WT.ec_id=NCLIMATE-201506

 

 

Grains of rice, Japanese swords and solar panels

Even Greenpeace has underestimated the growth of renewables.  In particular, solar has been growing exponentially, and may continue to be so for a while, though likely at a slower percentage rate.

Greenpeace did much better than many at projecting the growth of renewable energy sources in the 2000s.  Their projections were very close to outturn for wind – the 1999 projections were a little below outturn, the 2002 projections a little above.  However even Greenpeace underestimated the growth of solar.  The projections were nevertheless startlingly better than those of the IEA, who have, as I’ve previously noted, consistently underestimated the growth of renewables by a huge margin.  Growth of solar has been exponential, as has that of wind (at least until recently).  Greenpeace appears to have done well by following the logic of exponential growth.

Greenpeace’s projections for wind growth in the 2000s were close to outturn, but they underestimated the growth of solar …

Capture

Exponential growth is so powerful that it can confound intuition about how large numbers can become.  The counterintuitive power of exponential growth is illustrated by the process of making a traditional Japanese steel sword.  The supreme combination of strength and flexibility of such a weapon is said to derive from the way an exponential process layers the metal.  As the metal is beaten out and folded repeatedly to forge the sword the number of layers in the metal doubles up each time.  Following this simple process 15 times creates 215 layers, well over 30,000.  This would be impossible in any other way with traditional methods, and the number of layers created would be hard to comprehend without doing the formal calculation.  This property of producing very large numbers from simple repeated doublings may have contributed to previous projections for renewables seeming implausible, because they were so much greater than the then installed base.  This may have contributed to even Greenpeace being a little cautious in its projections for solar.

Nevertheless exponential growth inevitably runs into limits as some stage.  This is captured by the classic fable of grains of rice on a chessboard, where one grain is put on the first square, two on the second, four on the third, eight on the fourth and so on, doubling with each square.  Half way through the chessboard the pile of grains, though very large, is manageable – around 50 tonnes for the 32nd square.  However amounts then quickly begin to go beyond all reasonable physical constraints.  The pile on the final square would contain 263 grains of rice, which is about 230 billion tonnes.  This is about 300 times annual global production, and enough to cover not just a square of the chessboard but the entire land surface of the earth (to a depth of about a millimetre or two).

Extrapolating growth rates for solar PV from the period 2000 to 2013, when cumulative installed capacity doubled every two years, runs into similar limits.  At this growth rate the entire surface of the earth would be covered with solar panels before 2050.  This would provide far more energy than human civilisation would need, if there were room for any people, which there would not be because of all the solar panels.   So are there constraints that imply that renewables are now in second half of the chessboard – or, if you prefer a more conventional model, the linear part of an s-curve for technology adoption?

Looking at solar in particular, as I’ve previously commented, it needs a lot of land, but this is unlikely to be a fundamental constraint.  Some have previously suggested a limit as technologies reach scale, defined as about 1% of world energy supply, after which growth becomes more linear.  However solar manufacture and installation are highly scalable, so there are fewer obstacles to rapid growth than with traditional energy technologies.

Costs are rapidly falling, so that solar is becoming competitive without subsidy, both compared to other low carbon technologies and, increasingly, with high carbon technologies, especially if the cost of emissions is taken into account.  There is no obvious limit to how low the costs of solar cells can go that is likely to bind in the foreseeable future, although the ancillaries may show slower cost falls.  The costs of lithium ion batteries are also falling rapidly, having approximately halved in the last five years and continuing to fall at a similar rate.  As a result daily storage is becoming much more economic, reducing the problem of the peakiness of solar output and easing its integration into the grid, although seasonal storage remains a daunting challenge.

Solar still accounts for only around 1% of world electricity generation so globally there are plenty of opportunities globally in new electricity demand and from scheduled retirement of existing generating plant.  The vexed issues around grid charges, electricity market structures and role of incumbents may slow growth for a while, at least in some jurisdictions, but seem unlikely to form a fundamental barrier globally as long as costs continue to fall.

In short there seem few barriers to solar continuing to grow exponentially for a while, although likely at a slower percentage rate than in the past – each doubling is likely to take longer than two years given the current scale of the industry.  Solar can still continue moving quite a long way up the chessboard before it hits its limits.  How large the industry will become will need to await a future post, but provisionally there does not seem any reason why solar PV should not become a 300-600 GW p.a. or more industry.

Policy has played an important role in the development of solar to date mainly by providing financial incentives.  It will continue to play an important role, but this will be increasingly around removing barriers rather than providing a financial stimulus.

Of course I cannot know if this fairly optimistic view is right.  But it does at least to avoid some issues that might bias projections downwards.  First, it recognises the potential validity of counter-intuitive results.  In a sector such as energy which usually changes quite slowly the numbers resulting from exponential growth can seem implausible.  This can lead to rejection of perfectly sound forecasts, as the intuition of experienced professionals, which is based on long experience of incremental change, works against them.  Second it avoids assuming that all energy technologies have similar characteristics.  Finally, it takes into account a wide range of possibilities and views and considers the drivers towards them, helping to avoid the cognitive glitch of overconfidence in narrow limits to future outcomes.

The rate of growth of renewables is intrinsically uncertain.  But the biases in forecasts are often more towards underestimation than overestimation.  If you’ve been in the energy industries a while it’s quite likely that your intuition is working against you in some ways.  Don’t be afraid to make a projection that doesn’t feel quite right if that’s where the logic takes you.

Adam Whitmore – 25th November 2014

Notes

In the calculations of the results from exponential growth I have, for simplicity, assumed very rough and ready rounded values of 40,000 grains of rice = 1litre = 1 kg.  I’ve assumed 10m2/kW (including ancillaries) for the area of solar panels. The land surface of the earth is 1.5 x108 km2.  Solar capacity doubled around every 2 years from 2000 to 2013, growing from 1.25GW in 2000 to 140 GW in 2013 (source:  BP statistical review), reaching a land area of around 1400km2.  217 times its current area takes it past the land surface of the earth, so it would take to 2047 (34 years from 2013) with doubling of installed capacity every 2 years to reach this point.  The source of the story about sword-making is from the 1970s TV documentary The Ascent of Man and accompanying book.

For data on Greenpeace’s historical projections see:

http://www.greenpeace.org/international/Global/international/publications/climate/2012/Energy%20Revolution%202012/ER2012.pdf See pages 69 and 71