Category Archives: renewables

Seven Years On

The last seven year have seen too little progress on solving the climate change problem, despite some welcome developments.  Much more rapid progress is now needed.

It is now seven years since I started this blog – my first post was on 3rd March 2013.  It seems a good time to take a look at what has gone well and what has gone badly over that period in efforts to reduce climate change.  So here are seven ways in which things have gone badly, and seven ways in which they have gone well.

Things that have gone badly over the last seven years

  1. Annual CO2 emissions from energy and industry have increased over the last seven years, continuing the long-term trend, when they need to be decreasing rapidly.

Chart 1: Emissions of CO2 from energy and industry (excluding land use)

Source: EDGAR  https://edgar.jrc.ec.europa.eu/booklet2019/Fossil_CO2andGHG_emissions_of_all_world_countries_booklet_2019report.pdf

  1. Deforestation has not fallen – if anything it’s increased.

This not only bad for the climate, it’s bad for biodiversity and the wider stability of ecosystems.

Chart 2: Tropical primary forest loss (million hectares)

See:  https://www.bbc.co.uk/news/science-environment-48104037

  1. Over 15% of the remaining carbon budget has been used since 2013, even on the most optimistic view[i].

In 2013 the remaining carbon budget (that is, total cumulative CO2 emissions that remain possible while limiting global mean surface temperature rises to 2 degrees) was around 1900Gt CO2.  It is now around 1600Gt CO2.The remainder is getting used up ever more quickly as emissions continue to rise.

  1. Large amounts of high carbon infrastructure are still being built.

This includes large amounts of new coal-fuelled power generation. This risks lock-in of emissions for decades.

  1. There is a lack of progress with developing and implementing low carbon technologies in many sectors

Most emissions intensive industries, notably steel, have made little progress in changing their processes to reduce emissions.  One of the main technologies likely to be needed for decarbonising industrial emissions, CCS, has seen very little deployment, with only about an additional 10 mtpa[ii] stored from projects coming on line since 2013.  The largest contributor to the increase has been the Gorgan project, which is natural gas production, so not likely to be part of a net zero emissions world.  10 mtpa is only about 0.02% of global emissions.  CCS is also likely to be essential for achieving negative emissions from Bioenergy with CCS (BECCS), among other things.  There has also been only very limited progress to date on deploying low carbon hydrogen.

  1. China appears to be making emissions reduction less of a priority.

Among other factors, recently slowing economic growth seems to have focussed attention in China towards economic stability and energy security rather than the threats from climate change.

  1. Most countries have targets that are far too weak

Existing pledges under the Paris Agreement imply a continuing increase in global emissions rather than the rapid decrease that is needed[iii].

This is a daunting list of problems.  However, there is also some good news, although in all cases it would be even better if positive trends were happening faster.

Good news from the last seven years

  1. Costs of low carbon technologies have fallen rapidly, and continue to fall.

Wind and solar electricity are in many cases now competitive with, and often cheaper than, electricity from new fossil fuel generation.  Falling battery costs will enable to the electrification of surface transport and help balance the grid.

This seems to me to be by far the greatest cause for optimism.  Low carbon options will simply become the default choice for new investment in many cases, and policies to reduce emissions will increasingly be working to support a trend that is driven by economic as well as environment imperatives.

  1. Some countries have put binding targets in place for net zero emissions.

The UK already has such a target for 2050, seeking to end the UK’s contribution to climate change.  The EU seems likely to formalise a similar target very soon.

  1. Some countries have cut emissions significantly, showing what can be done.

The UK has cut its annual emissions by nearly 20% since 2013[iv], with the largest component of this being a reduction in coal use in the power sector, a change readily replicable elsewhere.

  1. Public concern about climate change has risen while scepticism about the science has largely disappeared, at least outside the USA and a few other countries.

85% of UK voters are now concerned about climate change[v] with over a quarter ranking it among their top three issues[vi].  This was reflected during the recent general election campaign[vii] in all parties offering policies to reduce emissions to net zero .  Over time this should create the political space for some of the more challenging policies that will be needed to reduce emissions to close to zero.

  1. Additional policies are being put in place, and carbon pricing is increasingly widespread.

For example, almost all major economies now have renewables targets, and there are over 50 carbon pricing systems in place around the world.

  1. Governments increasingly see economic opportunities in decarbonisation rather than costs.

The opportunities created by new industries are increasingly recognised as part of wider industrial policy.

  1. The Paris Agreement has been signed.

Almost all countries have now committed to limit temperature rises to below 2 degrees and to make a contribution to reaching that target, recognising different national circumstances.  Some may consider this is the main piece of good news over the past seven years.  However its effectiveness remains to be proven, and its success looks likely to depend on some of the other trends I’ve highlighted, notably falling costs for low carbon technologies.

Looking at these trends together, I am both less optimistic and more optimistic than I was in 2013.  I am less optimistic because seven years of rising emissions and continuing investment in high carbon infrastructure have made the challenge of limiting climate change even greater than it was.  But I am more optimistic because there is greater recognition and acceptance of the problem, more is now being done (though still nowhere near enough) and, above all, because low carbon energy is rapidly becoming cheaper than high carbon energy.  As a result it looks likely that emissions from the energy sector will eventually be greatly reduced and even halted entirely.  This may make it easier to focus on reducing other emissions as well, especially those from deforestation.

But eventually will be too late.  Much damage is already being done to our world.  More will inevitably follow. This will include the loss of irreplaceable parts of the natural world.  Given rising emissions, and how much of the carbon budget has been used up, it now looks practically impossible to keep temperature rises to 1.5 degrees, and difficult, though still possible, even to limit them to 2 degrees.

However it could still get much worse.  The task now is to avoid the worst of the risks by keeping emissions and accompanying temperature rises as low as possible, including keeping global temperature rises to below 2 degrees.  With a lot of effort and a little luck there is still time (just) to achieve this.  But the task has never been greater or more urgent.

Adam Whitmore – 9th March 2020

[i] For a 50% chance of remaining below 2 degrees, based on cumulative CO2 emissions.  See https://onclimatechangepolicydotorg.wordpress.com/2018/10/

[ii] https://www.globalccsinstitute.com/resources/global-status-report/

[iii] https://climateactiontracker.org/global/cat-emissions-gaps/

[iv] https://www.theccc.org.uk/publication/reducing-uk-emissions-2019-progress-report-to-parliament/

[v] https://www.ipsos.com/ipsos-mori/en-uk/concern-about-climate-change-reaches-record-levels-half-now-very-concerned

[vi] https://www.bbc.co.uk/news/science-environment-50307304

[vii] https://onclimatechangepolicydotorg.wordpress.com/2019/11/25/the-uks-political-consensus-on-climate-change/

 

Hydrogen and heat pumps may both play a role in UK building heating

Low carbon hydrogen and electricity via heat pumps may both play a large role in decarbonising building heating in the UK.  Ways forward are needed that maintain optionality around solutions while more is learnt about the right mix.

Decarbonising building heating in the UK poses a range of challenges.  First, the required transition is very large scale.  There are around 27 million households in the UK, with many more commercial buildings, small and large.  This implies around a million or more premises a year on average need to be converted to low carbon heat between now and 2050.

Along with scale, there is cost.  Replacing the UK’s heating system is expensive both in total and by household, even if the existing natural gas network can be used for hydrogen.   This challenge is made more difficult by the high seasonality of heating demand (Chart 1).  Building natural gas supply chains, reformers to produce hydrogen from natural gas, CCS, low carbon electricity and heat pumps all involve major capital investment.  Running this for only part of the year – the colder months – increases unit costs substantially. The chart below shows daily gas and electricity demand from non-daily metered (i.e. small) customers.  Demand for energy from gas, the major source of building heating at present, is about two or three times electricity demand during winter, and is much more seasonal.

Chart 1: Heating demand is highly seasonal …

Source: BEIS (2018) ‘Clean Growth – Transforming Heating’ https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/766109/decarbonising-heating.pdf

Furthermore, the transition to low carbon heat needs to be made largely with the UK’s existing building stock, which is mainly old and often badly insulated.  Improved insulation is a priority in any programme, but there are practical and cost constraints on what can be done with existing buildings.  (Buildings also need to be able to cope with the increased prevalence of heat waves as the climate warms, but that is a separate topic.)

Finally, building heating directly affects people’s day to day lives, so consumers’ acceptance is critical.  On the whole the present system, based mainly on natural gas boilers, works quite well except for its emissions.  Any new system should preferably work as well or better.

The leading candidates for low carbon heating in buildings are electricity, almost certainly using heat pumps to increase efficiency, and low carbon hydrogen.  Biomass seems unlikely to be available either at the scale or cost that would be needed for it to be a major contributor to low carbon heating, though it may find a niche.  District heating networks require low carbon heat and this must draw on the same ultimate set of sources of heat.  Waste heat from nuclear, once discussed as a possibility, no longer seems likely to be either practical or cost effective.

Recently the Committee on Climate Change (CCC) analysed the costs of decarbonising heat in 2050 using different approaches.  They looked at electricity, hydrogen, and combinations of the two.  The analysis concluded that a 50% increase over current costs was likely (Chart 2).  The remarkable thing about the analysis is that this cost was similar for all of the options considered.  Any differences were well within the uncertainty of the estimates.

Chart 2: Costs of different modes for decarbonising building heating …

Source:  Committee on Climate Change

With no large cost difference leading to one or the other option being preferred there is a need to test each option out to see which works better in practice.  Mixed solutions may be appropriate in many cases.  For example, hydrogen may be useful in providing top-up heat even if heat pumps are providing the baseload, or may be the only solution for some poorly insulated properties for which heat pumps don’t run at high enough temperatures.

The CCC’s analysis includes expected cost savings.  The transition to low carbon heat will clearly be more acceptable if this cost can be reduced further.  In particular there seem likely to be both technical advances and large economies of scale in heat pump manufacture and installation, and the costs of low carbon power may fall by more than assumed by the CCC.  As the analysis stands, a 50% increase is clearly politically difficult, especially when there do not seem to be advantages for the customer, and potentially some drawbacks.  However, this is less than a 2% p.a. compound increase in real terms over a 30 year period, which might be politically feasible if introduced gradually and spread across all consumers.

With such large changes in demand between summer and winter, seasonal storage is a major issue for reasons of both cost and practicality.  This is an under-researched area, and needs further work.  There are various possibilities – storage of hydrogen itself in salt caverns, storage of hydrogen as ammonia or storage of heat in ground sinks, but each has its problems and the scale involved is very large.

A final uncertainty is the form which hydrogen production will take.  At the moment methane in reformers predominates and, with the addition of CCS, may continue to do so.  However both the costs of low carbon electricity and of the electrolysis are decreasing rapidly.  Over the long term this may become a more significant pathway for hydrogen production.

These uncertainties imply that building heating poses a particularly difficult set of choices for policy.  It is not clear what route, or mix of routes, is the right one.  The transition needs to be quite rapid relative to the lifetimes and scale of existing infrastructure, and it involves the need for consumer acceptance.  There are also potentially strong network and lock in issues.

The best approach is likely to be to develop several types of solution in parallel, maintaining optionality while learning, and being prepared for some approaches to be dead ends.  The implications of this include the need for roll out of low carbon heat sources in some districts now to get an idea of how they will work at scale.

Some of this is happening, much more is needed.

Adam Whitmore -29th October 2019.

 

Comparison of cost estimates with previous analysis by this blog.

Around four and a half years ago I looked at the costs of decarbonising domestic heating in the UK in winter using low carbon electricity.  I concluded that switching to low carbon heat would add 75% or more to domestic heating bills, with some drawbacks for consumers (I also looked at higher cost case, but this case no longer seems likely due to the fall in the costs of low carbon electricity, especially offshore wind, since the analysis was done.)  I suggested that this meant that the transition would be difficult and that reductions in capital costs were necessary.

This analysis is broadly consistent with the CCC analysis quoted here, which suggests a 50% increase on current costs.  The estimates are roughly similar given the large uncertainties involved , the inevitable differences is assumptions, and different basis of the estimates.  In particular the CCC analysis factors in reductions in costs of low carbon heating likely by 2050, whereas my previous analysis was based on current costs to make the point that cost reductions are necessary,  Consequently it would be expected that the CCC analysis would show a smaller cost increase relative to current costs.  Also, the CCC’s analysis may exclude some costs – estimates such as these have a tendency to go up when you look at them more closely.  Equally it may understate the cost reductions possible over decades.

 

 

Europe’s phase out of coal

Europe is progressing with phasing out hard coal and lignite in power generation, but needs to move further faster, especially in Germany and Poland

Reducing coal use in power generation and replacing it with renewables (and in the short run with natural gas) remains one of the best ways of reducing emissions simply, cheaply and quickly at large scale.  Indeed, it is essential to meet the targets of the Paris Agreement that the world’s limited remaining cumulative emissions budget is not squandered on burning coal and lignite in power generation.

Europe is now making progress in phasing out coal.  The UK experience has already illustrated what can be done with incentives from carbon pricing to reduce coal generation.  Emissions from coal have reduced by more than 80% in the last few years, even though coal plant remains on the system[i].  However, many countries, including the UK, are now going further and committing to end coal use in power generation completely in the next few years.  The map below shows these commitments as they now stand.  Most countries in western Europe now have commitments in place. (Spain is an exception.  The government is expecting coal plant to be phased out by 2030, but currently does not mandate this.)

Map: Current coal phase-out commitments in Europe[ii]

Source: Adapted from material by Sandbag (see endnotes).

In some countries there is little or no coal generation anyway.  In other countries plants are old and coming to the end of their life on commercial grounds, or are unable to comply with limits on other pollutants.  In each case phase-out is expected to go smoothly.

However, the largest emitters are mainly in Germany and Poland and here progress is more limited.  Germany has now committed to coal phase-out.  But full phase-out might be as late as 2038.  Taking another 20 years or so to phase out such a major source of emissions is simply too long.  And Poland currently looks unlikely to make any commitment to complete phase out.

This means the Europe is still doing less than it could and should be doing to reduce emissions from coal and lignite.  As a result, EU emissions are too high, and the EU loses moral authority when urging other nations, especially in Asia and the USA, to reduce their emissions further, including by cutting coal use.

Several things are needed to improve this situation, including the following.

  • Further strengthening the carbon price under the EUETS by reducing the cap. I looked at the problem of continuing surpluses of allowances in another recent post, and accelerated coal closure would make the surplus even greater.  Although the rise in the EUA price in the last 18 months or so is welcome, further strengthening of the EUETS is necessary to reduce the risk of future price falls, and preferably to keep prices on a rising track so they more effectively signal the need for decarbonisation.
  • Continuing tightening of regulations on other pollutants, which can improve public health, while increasing polluters’ costs and therefore adding to commercial pressure to close plant.
  • Strengthening existing phase out commitments, including be specifying an earlier completion date in Germany.
  • Further enabling renewables, for example by continuing to improve grid integration, so that it is clear that continuing coal generation is unnecessary.

As I noted in my last post, making deep emissions cuts to avoid overshooting the world’s limited remaining carbon budget will require many difficulties to be overcome.  There is no excuse for failing to make the relatively cheap and easy reductions now.   Reducing hard coal and lignite use in power generation in Europe (and elsewhere) continues to require further attention.

Adam Whitmore – 18th June 2019

[i] See https://onclimatechangepolicydotorg.wordpress.com/2018/01/17/emissions-reductions-due-to-carbon-pricing-can-be-big-quick-and-cheap/

With and updated chart at:

https://onclimatechangepolicydotorg.wordpress.com/carbon-pricing/price-floors-and-ceilings/

[ii] Map adapted from Sandbag:

https://sandbag.org.uk/wp-content/uploads/2018/11/Last-Gasp-2018-slim-version.pdf

and data in:

https://beyond-coal.eu/wp-content/uploads/2018/11/Overview-of-national-coal-phase-out-announcements-Europe-Beyond-Coal-November-2018.pdf

and https://www.eia.gov/todayinenergy/detail.php?id=39652

How well is the UK on track for zero emissions by 2050?

By 2020 the UK will have very nearly halved its emissions over 30 years.  Reducing emissions by the same amount over the next 30 years will get the UK very close to zero.  However this will be very much more difficult.

A robust net zero target has been recommended for the UK …

A recent report by the UK’s Committee on Climate Change (CCC), the Government’s official advisory body, recommends that the UK adopts a legally binding target of net zero emissions of greenhouse gases by 2050[i], that is remaining emissions must be balanced by removal from the atmosphere.  If the Government agrees, this will be implemented by amending the reduction mandated by the Climate Change Act, from an 80% reduction from 1990 to a 100% reduction.

The target has several features that make it particularly ambitious.  It:

  • sets a target of net zero emissions covering all greenhouse gases;
  • includes international aviation and shipping;
  • allows no use of international offsets; and
  • is legally binding.

This is intended to end the UK’s contribution global warming.  It has no precedents elsewhere, although in France a bill with comparable provisions is under consideration[ii].

Progress to date has been good …

The UK has made good progress so far in reducing emissions since 1990.  Emissions in 2018 were around 45% below 1990 levels, having reduced at an average rate of about 12.5 million tonnes p.a. over the period.  On current trends, over the thirty years from 1990 to 2020 emissions will be reduced to about 420 million tonnes p.a., 47% below their 1990 levels.  Emissions will thus have nearly halved over the 30 years 1990 to 2020, half the period from 1990 to the target date of 2050.

Chart 1 shows how the UK’s progress compares with a linear track to the current target of an 80% reduction, to a 95% reduction and to a 100% reduction.  (For simplicity I’m ignoring international aviation and shipping).  The UK is currently on a linear track towards a 95% reduction by 2050.

Chart 1: Actual UK emissions compared with straight line progress towards different 2050 targets

 

Source: My analysis based on data from the Committee on Climate Change and UK Government.  Data for 2018 is provisional[iii]

The largest contributor to the total reduction so far has been the power sector.  Analysis by Carbon Brief[iv] showed that the fall in power sector emissions has been due to a combination deploying renewables, which made up about of third of generation in 2018, reducing coal use by switching to natural gas, and limiting electricity demand growth.

Industrial emissions have also fallen significantly.  However some of this likely represents heavy industry now being concentrated elsewhere in the world, so likely does not represent a fall in global emissions.  Emissions from waste have also fallen, due to better management.

Reducing emissions will be relatively easy in some sectors …

There are also reasons for optimism about continuing emissions reductions.  Many technologies are now there at scale and at competitive prices, which they were not in previous decades.  For example, falling renewables costs and better grid management, including cheaper storage, will help further decarbonisation of the power sector.  Electrification of surface transport now appears not only feasible, but likely to be strongly driven (at least for cars and vans) by economic factors alone as the cost of batteries continues to fall.

But huge challenges remain …

Nevertheless important difficulties remain for complete decarbonisation.

CCS is identified by the report as an essential technology.  However, as I have noted previously, it has made very little progress in recent years in the UK or elsewhere[v].  CCS is especially important for decarbonising industry.  This includes a major role for low carbon hydrogen, which is assumed to be produced from natural gas using CCS – although another possibility is that it comes from electrolysis using very cheap renewables power, e.g. at times of surplus.  CCS also looks to be necessary because of its use with bioenergy (BECCS), to give some negative emissions, though the lifecycle emissions from this will require careful attention

Decarbonising building heating, especially in the residential sector, continues to be a challenge.  The report envisages a mix of heat pumps and hydrogen, perhaps in the form of hybrid designs, with heat pumps providing the baseload being topped-up up by burning of hydrogen in winter.  I have previously written about the difficulties of widespread use of heat pumps[vi], and low carbon hydrogen from natural gas with CCS is also capital intensive to produce and therefore expensive to run for the winter only.  The scale of any programme and consumer acceptance remain major challenges, and the difficulties encountered by the UK’s smart meter installation programme – by comparison a very simple change – are not an encouraging precedent.

Emissions from agriculture are difficult to eliminate completely, and no technologies are likely to be available by 2050 that enable aviation emissions to be completely eliminated.  This will require some negative emissions to balance remaining emissions from these sectors.

Policy needs to be greatly strengthened …

Crucially several of the necessary transformations are very large scale, and need long lead times, and investment over decades.  There is an urgent need to make progress on these, and policy needs to recognise this.  This includes plans for significant absorption from reforestation, as trees need to be planted early enough that they can grow to be absorbing substantial amounts by 2050.

The UK’s progress on emissions reduction so far has been good, having made greater reductions than any other major economy[vii].  And technological advances in some areas are likely to enable substantial further progress.  However much more is needed.  In particular policy needs to look now at some of the difficult areas where substantial long-term investment will be needed

Adam Whitmore – 22nd May 2019

 

 

[i] https://www.theccc.org.uk/2019/05/02/phase-out-greenhouse-gas-emissions-by-2050-to-end-uk-contribution-to-global-warming/

 

[ii] The CCC report notes that Norway, Sweden and Denmark have net zero targets, but they allow use of international offsets (up to 15% in the case of Sweden).  France has published a target similar to the UK’s in a bill.  The European Commission has proposed something similar for the EU as a whole, but this is a long way from being adopted. California has non-legally binding targets to achieve net zero by 2045.  Two smaller jurisdictions (Costa Rica, Bhutan) have established net zero targets but these are expected to be achieved mainly by land use changes.  New Zealand has a draft bill to establish a target, but eliminating all GHGs will be difficult because of the role of agriculture in the New Zealand economy.

 

[iii] https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2018  The change from 2017 to 2018 is applied to the data series from 1990 produced by the CCC (the two data series differ very slightly in their absolute levels).

 

[iv] https://www.carbonbrief.org/analysis-uk-electricity-generation-2018-falls-to-lowest-since-1994

 

[v] https://onclimatechangepolicydotorg.wordpress.com/2018/04/25/a-limited-but-important-medium-term-future-for-ccs/

 

[vi] https://onclimatechangepolicydotorg.wordpress.com/2015/05/18/reducing-the-costs-of-decarbonising-winter-heating-needs-to-be-a-priority/

 

[vii] https://onclimatechangepolicydotorg.wordpress.com/2017/05/09/uk-emissions-reductions-offer-lessons-for-others/

 

The IEA’s solar PV projections are more misleading than ever

The IEA is still grossly underestimating solar PV in its modelling

This post is a quick update of previous analysis.

Back in 2013 I pointed out how far from reality the IEA’s projections of renewables deployment were.  They persistently showed the rates of installation of renewables staying roughly constant over the following 20 years at whatever level they had reached at the time of the projection being made.  In reality, rates of installation were growing strongly, and have continued to do so (see chart).  Rates of installation are now a factor of nearly four times greater than the IEA was projecting back in 2013 – they were projecting installation rates of about 28GW for 2018, where in fact around 100 GW were installed in 2017[1] and an estimated 110GW in 2018.

I have returned to the topic since 2013 (see links at the bottom of this post), as have many others, each time pointing out how divorced from reality the IEA’s projections are.

Unfortunately, the IEA is continuing with its approach, and continuing to grossly understate the prospects for renewables.  Auke Hoestra has recently updated his analysis of the IEA’s solar PV projections to take account of the latest (2018) World Energy Outlook New Policies Scenario (see link below chart – in addition to chart data his post also contains a valuable commentary on the issue).  The analysis continues to show the same pattern of obviously misleading projections, with the IEA showing the rate of solar PV installation declining from today’s rate until 2040.  Of course eventually the market will mature, and rates of installation will stabilise, but this seems a long way off yet.

IEA projections for solar PV in successive World Energy Outlooks compared with outturn

http://zenmo.com/photovoltaic-growth-reality-versus-projections-of-the-international-energy-agency-with-2018-update/

In 2013 I was inclined to give the IEA the benefit of the doubt, suggesting organisational conservatism led to the IEA missing a trend.  This no longer seems tenable – the disconnect between projections and reality has been too stark for too long.  Instead, continuing to present such projections is clearly a deliberate choice.

As Hoekstra notes, explanations for the disconnect have been advanced by the IEA, but they are unsatisfactory.  And as renewables become an ever-larger part of the energy mix the distortions introduced by this persistence in misleading analysis become ever greater.

There is no excuse for the IEA persisting with such projections, and none for policy makers taking them seriously.  This is disappointing when meaningful analysis of the energy transition is ever more necessary.

Adam Whitmore -21st January 2019

https://onclimatechangepolicydotorg.wordpress.com/2013/10/08/why-have-the-ieas-projections-of-renewables-growth-been-so-much-lower-than-the-out-turn/

https://onclimatechangepolicydotorg.wordpress.com/2015/02/27/the-ieas-central-projections-for-renewables-continue-to-look-way-too-low/

https://onclimatechangepolicydotorg.wordpress.com/2015/06/27/the-ieas-bridge-scenario-to-a-low-carbon-world-again-underestimates-the-role-of-renewables/

https://onclimatechangepolicydotorg.wordpress.com/2017/09/26/underestimating-the-contribution-of-solar-pv-risks-damaging-policy-making/

[1] The BP Statistical Review of World Energy shows a total of 87GW installed in 2017 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-renewable-energy.pdf

Five years on

The past five years have given many reasons for optimism about climate change

I have now been writing this blog for just over five years, and it seems timely to step back and look at how the climate change problem appears now compared with five years ago.

In some ways it is easy to feel discouraged.  In the last five years the world has managed to get through about a tenth of its remaining carbon budget, a budget that needs to last effectively forever.

However, in many ways there seem to be reasons for much greater optimism now than five years ago.  Several trends are converging that together make it appear that the worst of the risks of climate change can be avoided.

There is increasing action at the national level to reduce emissions, reinforced by the Paris Agreement …

Legislation is now in place in 164 countries, including the world’s 50 largest emitters.  There are over 1200 climate change and related laws now in place compared with 60 twenty years ago[i].  And this is not restricted to developed countries – many lower income countries are taking action.  Action at national level is being supported around the world by action in numerous cities, regions and companies.

This trend has now been reinforced by the Paris Agreement, which entered into force in November 2016, and commits the world to limiting temperature rises and reducing emissions.

There is increasing evidence of success in reducing emissions …

Many developed countries, especially in Europe, have shown since 1990 that it is possible to reduce emissions while continuing to grow their economies.  Globally, emissions of carbon dioxide from energy and industry have at least been growing more slowly over the past four years and may even have reached a plateau[ii].

Carbon pricing is spreading around the world  …

Among the many policies put in place, the growth of carbon pricing has been especially remarkable.  It has grown from a few small northern European economies 15 years ago to over 40 jurisdictions[iii].  Prices are often too low to be fully effective.  However, carbon pricing has also been shown to work spectacularly well in the right circumstances, as it has in the UK power sector.  And the presence of emissions caps in many jurisdictions gives a strong strategic signal to investors.

Investors are moving out of high carbon sources and in to lower carbon opportunities …

Companies are under increasing pressure to say how their businesses will be affected by climate change and to do something about reducing emissions.  And initiatives such as the Climate Action 100+, which includes over two hundred global investors controlling over $20 trillion of assets, are putting pressure on companies to step up their action.  This will further the trend towards increasing investment in a low carbon economy.  Meanwhile, many funds are divesting from fossil fuels, and vast amounts of capital are already going into low carbon investments.

Falling costs and increasing deployment of renewables and other low carbon technologies …

Solar and wind power and now at scale and continuing to grow very rapidly.  They are increasingly cost-competitive with fossil fuels.  The decarbonisation of the power sector thus looks likely to proceed rapidly, which will in turn enable electrification to decarbonise other sectors.  Electric vehicle sales are now growing rapidly, and expected to account for the majority of light vehicle sales within a couple of decades.  Other technologies, such as LED lighting are also progressing quickly.

This is not only making emissions reductions look achievable, it is making it clear that low carbon technologies can become cheaper than the high carbon technologies they replace, and can build whole new industries as they do.  As a reminder of just how fast things have moved, in the last five years alone, the charts here show global generation from wind and solar since 2000.

Falling costs of low carbon technologies, more than anything else, gives cause for optimism about reducing emissions.  As lower carbon alternatives become cheaper the case for high carbon technologies will simply disappear.

Charts: Global Generation from Wind and Solar 2000 – 2017

Sources:  BP Statistical Review of World Energy, Enerdata, GWEC, IEA

Climate sensitivity looks less likely to be at the high end of the range of estimates …

The climate has already warmed by about a degree Celsius, and some impacts from climate change have been greater than expected.  However, the increase in temperature in response to increasing concentrations of greenhouse gases has so far shown few signs of being towards the top end of the possible range, although we can never rule out the risk of bad surprises.

Taking these trends together there is reason to be cautiously optimistic …

There will still be serious damage from climate change – indeed some is already happening.  And it is by no means clear that the world will act as quickly as it could or should.  And there could still be some nasty surprises in the earth’s reaction to continuing emissions.  Consequently, much effort and not a little luck is still needed to avoid the worst effects of climate change.

But compared with how things were looking five years ago there seem many reasons to believe that things are beginning to move in the right direction.  The job now is to keep things moving that way, and to speed up progress.

Adam Whitmore – 10th April March 2018 

[i] http://www.lse.ac.uk/GranthamInstitute/publication/global-trends-in-climate-change-legislation-and-litigation-2017-update/

[ii] http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674.pdf

[iii] https://openknowledge.worldbank.org/handle/10986/28510

The case for additional actions in sectors covered by the EUETS is now even stronger

Recently agreed reforms to the EUETS mean that excess allowances in the MSR will be cancelled.  This further strengthens the case for actions such as phase-out of coal plant, increasing energy efficiency and deploying more renewables.

About a year ago I looked at whether additional actions to reduce emissions in sectors covered by the EUETS do in practice lead to net emissions reductions over time [i].

It is sometimes claimed that total emissions are always equal to the fixed cap.  By implication additional actions do not reduce total emissions, because if emissions are reduced in one place there will be a corresponding increase elsewhere.  This is sometimes called the “waterbed hypothesis” by analogy – if you squeeze in one place there is an equal size bulge elsewhere.

Although often repeated, this claim is untrue.  Under the EU ETS at present the vast majority of emissions reductions from additional actions will be permanently retained, reflecting the continuing surplus of allowances and the operation of the MSR.  Furthermore, over the long term the cap is not fixed, but can respond to circumstances.  For example, tighter caps can be set by policy makers once emissions reductions have been demonstrated as feasible.

When I last looked at this issue, the fate of additional allowances in the MSR remained necessarily speculative.  It was clear that additional excess allowances would at least not return to the market for decades.  It also seemed likely that they would be cancelled.  However, no cancellation mechanism was then defined.

This has now changed with the trilogue conclusions reached last week, which include a limit on the size of the MSR from 2023.  The limit is equal to the previous year’s auction volume, and is likely, given the size of the current surplus, to lead to large numbers of allowances being cancelled in the 2020s.

With this limit in place there is a very clear pathway by which allowances freed up by additional actions, such as reduced coal burn or increased renewables, will add to the surplus, be transferred to the MSR then cancelled (see diagram).  Total emissions under the EUETS will be correspondingly lower.

There is now a clear mechanism by which additional actions reduce total emissions

Modelling confirms that with the limit on the size of the MSR in place a large majority of reductions from non-ETS actions are retained, because additional allowances freed up almost all go into the MSR, and are then cancelled.  This is shown in the chart below for an illustrative case of additional actions which reduce emissions by 100 million tonnes in 2020.  Not all of the allowances freed up by additional actions are cancelled.  First there is a small rebound in emissions due to price changes (see references for more on this effect).  Then, even over a decade, the MSR does not remove them all from circulation.  This is because it takes a percentage of the remainder each year, so the remainder successively decreases, but does not reach zero.  If the period were extended beyond 2030 a larger proportion would be cancelled, assuming a continuing surplus.  Nevertheless over 80% of allowances freed up by additional actions are cancelled by 2030.

The benefit of additional actions is thus strongly confirmed.

The large majority of allowances freed up by additional actions are eventually cancelled

Source: Sandbag

When the market eventually returns to scarcity the effect of additional actions becomes more complex.  However additional actions are still likely to reduce future emissions, for example by enabling lower caps in future.

Policy makers should pursue ambitious programmes of additional action in sectors covered by the EUETS, confident of their effectiveness in the light of these conclusions.  Some of the largest and lowest cost gains are likely to be from the phase out of coal and lignite for electricity generation, which still accounts for almost 40% of emissions under the EUETS.  Continuing efforts to deploy renewables and increase energy efficiency are also likely to be highly beneficial.

Adam Whitmore – 15th November 2017

[i] See https://onclimatechangepolicydotorg.wordpress.com/2016/10/21/additional-actions-in-euets-sectors-can-reduce-cumulative-emissions/  For further detail see https://sandbag.org.uk/project/puncturing-the-waterbed-myth/ .  A study by the Danish Council on Climate Change reached similar conclusions, extending the analysis to the particular case of renewables policy.  See Subsidies to renewable energy and the european emissions trading system: is there really a waterbed effect? By Frederik Silbye, Danish Council on Climate Change Peter Birch Sørensen, Department of Economics, University of Copenhagen and Danish Council on Climate Change, March 2017.

Prospects for Electric Vehicles look increasingly good

Electric vehicles update

Indicators emerging over the last 18 months increase the likelihood of plug-in vehicles becoming predominant over the next 20 years.  However, continuing strong policy support is necessary to achieve this.

Several indicators have recently emerged for longer term sales of plug-in vehicles (electric vehicles and plug-in hybrids).  These include targets set by governments and projections by analysts and manufacturers.

The chart shows these indicators compared with three scenarios for the growth of plug-in vehicles globally if policy drivers are strong.  (The scenarios are based on those I published around 18 months ago, and have been slightly updated for this post – see the end of this post and previous post for details.) The green lines show the share of sales, and the blue lines show the share of the total vehicle stock.  Other indicators are marked on the chart as diamonds, shown in green as they correspond to the green lines.  I’ve excluded some projections from oil companies as they appear unrealistic.

The scenarios show plug in vehicles sales in 2040 at between just over half and nearly all of new light vehicles.  However the time taken for the vehicle fleet to turn over means that they are a smaller proportion of the fleet, accounting for between a third and about three quarters of the light vehicle fleet by 2040.  The large range of the scenarios reflects the large uncertainties involved, but they all show plug-in vehicles becoming predominant over the next 20 years or so.

The indicators shown are all roughly in line with the scenario range (see detailed notes at the end of this post), giving additional confidence that the scenario range is broadly realistic, although the challenges of achieving growth towards the upper end of the range remain formidable.  Some of the projections by manufacturers and individual jurisdictions are towards the top end of the range, but the global average may be lower.

Chart.  Growth of sales of Plug-in light vehicles

 

The transition will of course need to be accompanied by continuing decarbonisation of the power sector to meet greenhouse gas emissions reduction goals.

Maintaining the growth of electric vehicle sales nevertheless looks likely to require continuing regulatory drivers, at least for the next 15 years or so.  This will include continuing tightening emissions standards on CO2 and NOx and enabling charging infrastructure.  If these things are done then the decarbonisation of a major source of emissions thus now seems well within sight.

Adam Whitmore – 13th October 2017

 

 

Background and notes

This background section gives further information on the data shown on the chart.  In some cases it is unclear from the reports whether projections are for pure electric vehicles only or also include plug-in hybrids.

Developments in regulation

Policy in many countries seems increasingly to favour plug-in vehicles.  Some recent developments are summarised in the table below.   These policy positions for the most part still need to be backed by solid implementation programmes.  Nevertheless they appear to increase the probability that growth will lie within the envelope of the projections shown above, which are intended to correspond to a world of strong policy drivers towards electrification.

Policy developments 

Jurisdiction Policy commitment
UK Prohibit sale of new cars with internal combustion engines by 2040[1]
France Prohibit sale of new cars with internal combustion engines by 2040[2]
Norway All new sales electric by 2025[3]
India All cars electric by 2030 (which appears unrealistic so goal may be modified, for example to new cars)[4]
China Reportedly considering a prohibition on new petrol and diesel.  Date remains to be confirmed, but target is for 20% of the market to be electric by 2025.[5]

 

Sales

The market is currently growing rapidly from a low base.  Total vehicle sales were 0.73 million in 2016, compared with 0.58 million in 2015.  Six countries have reached over 1% electric car market share in 2016: Norway, the Netherlands, Sweden, France, the United Kingdom and China. Norway saw 42% of sales being EVs in June 2017

Manufacturers’ projections

Several manufacturers have issued projections for the share of their sales they expect to be for plug-in vehicles.  Some of these are shown in the table.

Manufacturers’ projections for sales of plug-in vehicles

 

Manufacturer Target/expectation for plug-in vehicles
Volkswagen 20-25% of sales by 2025[6]
Volvo All new models launched from 2019[7]
PSA ( Peugeot and Citroen brands) 80% percent of models electrified by 2023[8]

 

Clearly individual manufacturers’ projections may not be achieved, and to some extent the statements may be designed to reassure shareholders that they are not missing an opportunity.  So far European manufacturers have been slow to develop EVs.  Also these manufacturers may not representative of the market as a whole.  Other companies may progress more slowly.

However others may proceed more quickly.  As has been widely reported, Tesla has taken over 500,000 advanced orders for its Model 3 EV, itself equivalent to almost the entire market for electric vehicles in 2015.  And in line with the Chinese Government’s targets manufacturers in China are expected to increase production rapidly.

Projections by other observers

Projections by other observers are in most cases now in line with the scenairos shown here.

  • Morgan Stanley project 7% of global sales by 2025[9]
  • BNP Paribas project 11% of global sales by 2025, 26% by 2030[10]
  • JP Morgan profject 35% of sales by 2025 and 48% of sales by 2030[11]
  • Last year Bloomberg’s projections showed growth to be slower than with these projections. However they have since updated their analysis, showing 54% of new cars being electric by 2040[12].
  • DNV.GL recently published analysis showing EV’s accounting for half of sales globally by 2033, in line with the mid case in this analysis.

In contrast BP predicts much slower growth in their projections[13].  However BP’s view seems implausibly low in any scenario in which regulatory drivers towards EVs are as strong as they appear to be.  Exxon Mobil gives lower projections still, while OPEC’s are a little above BP’s but still well below the low case shown here.[14].

Notes on changes to projections since May 2016

These projections are updated from my post last year but the differences over the next 15 years are comparatively minor.  The projections are for light vehicles, so exclude trucks and buses.  Note that percentage growth in early years has been faster than shown by the s-curve model – however this is likely to prove a result of the choice of a simple function.  What matters most for emissions reductions is the growth from now and in particular through the 2020s.

Assumption change Rationale
Higher saturation point Continuing advances in batteries reduce the size of the remaining niche for internal combustion engine vehicles
Longer time to saturation The higher saturation point will need additional time to reach.
Somewhat slower growth in total numbers of vehicles Concerns about congestion and changed modes of ownership and use are assumed to lead to lower growth in the total vehicle stock over time.  This tends to make a certain percentage penetrations easier to achieve because the percentage applies to fewer vehicles.

 

 

[1] http://www.bbc.co.uk/news/uk-40723581

[2] http://www.bbc.co.uk/news/world-europe-40518293

[3] http://fortune.com/2016/06/04/norway-banning-gas-cars-2025/

[4] https://electrek.co/2016/03/28/india-electric-cars-2030/

[5] http://www.bbc.co.uk/news/business-41218243

[6] http://www.bbc.co.uk/news/business-36548893

[7] https://www.media.volvocars.com/global/en-gb/media/pressreleases/210058/volvo-cars-to-go-all-electric

[8] http://www.nasdaq.com/video/psa-prepared-for-electric-vehicle-disruption–says-ceo-59b80a969e451049f87653d9

[9] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[10] https://www.economist.com/news/business/21717070-carmakers-face-short-term-pain-and-long-term-gain-electric-cars-are-set-arrive-far-more

[11] https://www.cnbc.com/2017/08/22/jpmorgan-thinks-the-electric-vehicle-revolution-will-create-a-lot-of-losers.html

[12] https://about.bnef.com/electric-vehicle-outlook/

[13] https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html

[14] https://www.economist.com/news/briefing/21726069-no-need-subsidies-higher-volumes-and-better-chemistry-are-causing-costs-plummet-after

Underestimating the contribution of solar PV risks damaging policy making

A brief update on this post can be found here https://onclimatechangepolicydotorg.wordpress.com/2019/01/21/the-ieas-solar-pv-projections-are-more-misleading-than-ever/

Underestimating the contribution of solar PV risks damaging policy making

The continuing lack of realism in projections for solar PV risks damaging policy making by misdirecting effort in developing low carbon technologies.

Solar PV continues its remarkable growth …

Electricity generation from solar PV continues to grow very rapidly.  It now supplies over 1% of global electricity consumption and this proportion looks set to continue growing very rapidly over the next decade as costs continue to fall.

Chart 1 Rapid growth of solar PV generation continues

Sources: BP statistical review of world energy [i].  1% of consumption based on data for generation with an adjustment for losses.

Many studies have underestimated this growth and continue to do so …

This growth has been much faster than many predicted.  In 2013 and again in 2015  I noted[ii] that the IEA’s annual World Energy Outlook (WEO) projections for both wind and solar PV were consistently vastly too low.  Specifically, the IEA’s projections showed the annual rate of installation of wind and solar PV capacity remaining roughly constant, whereas in fact it both were increasing rapidly.  Updated analysis for solar PV recently published by Auke Hoekstra[iii] shows that this position seems remarkably unchanged (see Chart 2).  The repeated gross divergence between forecasts and outturns over so many years makes it hard to conclude anything other than the IEA is showing a wilful disconnection with reality in this respect, though their historical data on the energy sector remains very valuable.

Chart 2:  IEA projections for solar PV capacity continue to vastly underestimate growth

Although the IEA’s projections are particularly notable for their inability to learn from repeated mistakes, others have also greatly underestimated the growth of solar PV[iv].    Crucially, as a recent study in Nature Energy[v] shows, this tendency extends to many energy models used in policy making, including those relied on by the IPCC in its Assessment Reports.

This is largely because models have underestimated both the effect of policy support on deployment and the rate of technological progress, and so have underestimated the resulting falls in cost both in absolute terms and relative to other technologies.  Where new information has been available there has often been a lag in incorporating it in models.  Feedbacks between cost falls, deployment and policy may also have been under-represented in many models.  Consequently models have understated both growth rates and ultimate practical potential for solar PV.

This damages policy making  …

Does this matter?  I think it does, for at least two reasons.

First, if policy is based on misleading projections about the role of different technologies then policy support and effort will likely be misdirected.  For example, means of integrating solar PV at very large scale into energy systems look to have been under-researched and under-supported.  Other low carbon technologies such as power generation with CCS may have received more attention in comparison to their potential[vi].

Second, there is a risk of damaging the policy debate.  In particular there is a risk of exacerbating polarisation of the debate, rather than creating a healthy mix of competing judgements.  There is already a tendency for some commentaries on energy to favour fossil energy sources, and perhaps nuclear, and for others to favour renewables – what one might call “traditionalist” and “transitionalist” positions.  Traditionalists, including many energy companies, tend to point to the size and inertia of the energy system and the problems of replacing the current system with new sources of energy.  Transitionalists, including many entrepreneurs and environmentalists, tend to emphasise the urgent need to reduce emissions, the speed of change in technologies and costs now underway, and the exciting business opportunities created by change.

Both perspectives have merit, and the debate is too important to ignore either.  The IEA provides an example of distorting the debate. It will naturally, due to its history, tend to be seen as to some extent favouring the traditionalist viewpoint.  If this perception is reinforced by grossly unrealistic projections for renewables it risks devaluing the IEA’s other work even when it is more realistic, leaving it on one side of the debate. An opportunity for a balanced contribution from a major institution is lost.  The debate will be more polarised as a result, risking misleading policy makers, and distorting policy choices.

Securing balanced, well informed debate on the transition to a low carbon energy system is quite challenging enough.  Persistently underestimating the role of a major technology does not help.

Adam Whitmore -26th September 2017

 

 

[i] http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-renewable-energy.pdf

[ii] For details see here, here and  here

[iii]  https://steinbuch.wordpress.com/2017/06/12/photovoltaic-growth-reality-versus-projections-of-the-international-energy-agency/

[iv] An exception, as I have previously noted is work by Greenpeace.  Some previous scenario work by Shell was also close on wind and solar, but greatly overestimated the role of CCS and biofuels.

[v] The Underestimated Potential for Solar PV Energy to Mitigate Climate Change, Creutzig et. a. Nature Energy, Published 28/08/17

[vi] CCS still looks essential for decarbonisation in some cases, and given lead times for its development continued research and early deployment is still very much needed.  This is especially so for industrial applications.  Deployment in power generation looks likely to be more limited over the next decade or more, though some may still be needed when to move to very low emissions, and eventually to zero net emissions.  However the contribution of CCS to power generation now looks likely to be much less than that from solar PV.

Additional actions in EUETS sectors can reduce cumulative emissions

It is often claimed that additional actions to reduce greenhouse gas emissions in sectors covered by the EUETS are ineffective because total emissions are set by the level of the cap.  However this claim is not valid in the current circumstances of the EUETS, and is unlikely to be so even in future.  Additional emissions reduction measures in covered sectors can be effective in further permanently reducing emissions.

This post is longer than usual as it deals with a very important but relatively technical policy issue.

The argument about the effectiveness of additional actions to reduce emissions …

Many additional actions are being taken to reduce greenhouse gas emissions in sectors covered by the EUETS.  These include energy efficiency programmes, deployment of renewables, replacing coal plants with less carbon intensive generation, and national carbon pricing.

It is often argued that such additional actions do not reduce total emissions because the maximum quantity of emissions is set by the EUETS cap, so emissions may remain at the fixed level of the cap, irrespective of what other action is taken (see the end of this post for instances of this argument being used publicly).

However, this argument does not stand up to examination.

Assessment of the argument needs to take account of the current circumstances of the EUETS.  Emissions covered by the EUETS were some 200 million tonnes (about 10%) below the cap in 2015.  This year emissions are likely to be 13% below the cap.  The EUETS currently has a cumulative surplus of almost three billion allowances, including backloaded allowances currently destined for the Market Stability Reserve (MSR), and the surplus is set to grow as emissions continue to be less than the cap.

In these circumstances emissions reductions from additional actions will mainly increase the surplus of allowances, with almost all of these allowances ending up in the (MSR).  These allowances will stay there for decades under current rules, and so not be available to enable emissions during this time.

Indeed, in practice these allowances are unlikely ever to enable additional emissions.  The argument that they will assumes that the supply of allowances is fixed into the long term.  In practice this is not the case.  Long term supply of allowances is determined by policy, which can and does respond to circumstances.  Additional surpluses and lower prices are likely to lead to tighter caps than would otherwise be the case, or cancellation of allowances from the MSR or elsewhere.

The remainder of this post looks at these issues in more detail, including why the erroneous view that additional actions don’t reduce cumulative emissions has arisen.

Why current circumstances make such a difference

The argument that additional actions to reduce emissions will be ineffective reflects how the EUETS was expected to operate when it was introduced. It was assumed that demand for allowances would adjust so that the quantity of allowances used would always equal to the cap, which was assumed to be fixed.

This is illustrated in stylised form in the diagram below.  The supply curve is vertical – perfectly inelastic supply.  Demand for allowances without additional actions leads to prices at an initial level.  Additional actions reduce demand for allowances at any given price, effectively shifting the demand curve to the left by the amount by which additional actions reduce emissions.  This leads price to fall until the lower price creates sufficient additional demand for allowances, so that total demand for allowances is again equal to the supply set by the cap.  Because the supply curve is fixed (vertical) the equilibrium quantity of emissions is unchanged, remaining equal to the cap[1].

Chart 1: A price response to the change in demand for allowances can lead to emissions re-equilibrating at the cap when allowances are scarce …

first-chart

However, at present, large increases in emissions (such that emissions rise to the cap) due to falling prices are clearly not occurring, and they seem unlikely to do so over the next few years.  As noted above, the market remains in surplus both cumulatively and on an annual basis.  The price would be close to zero in the absence of banking of allowances into subsequent phases, because there would be a cumulative surplus over Phase 3 of the EUETS, and so no scarcity[2].

If demand were further reduced in the absence of banking there would be no price fall, because prices would already be already close to zero.  Correspondingly, there would be no increase in demand for allowances to offset the reduced emissions from additional actions.  The emissions reductions from additional actions would be retained in full. This is again illustrated in stylised form in the diagram below. 

Chart 2: With a surplus of allowances and price close to zero (assuming no banking) any reduction in demand for allowances will be retained in full …

chart-1

In practice the potential to bank allowances and the future operation of the MSR supports the present price.  It is expected that in future as the cap continues to fall allowances will become scarce.  There is thus a value to allowances set by the cost of future abatement.

Additional actions now to reduce emissions increase the surplus, and so postpone the expected date at which the market returns to balance.  This reduces current prices.  This will in turn lead to some increase in emissions.  However, this increase will be small – much smaller than if the market were short of allowances now.

Quantifying this effect 

Modelling indicates that if additional actions are taken over the next 10-15 years, then the increase in demand for allowances due to falling price will be less than 10% of the size of the reduction in emissions[3].  Correspondingly more than 90% of the emissions reductions due to additional actions are retained, adding to the surplus of allowances which, which end up in the MSR.  Modelling parameters would need to be in error by about an order of magnitude to substantially affect this conclusion.

This effect arises in part because of the low level of prices at present.  This means that even a large percentage change in price leads to a small absolute change, and thus a small effect on demand for allowances.  Even a 50% price fall would be less than €3/t at current price levels.  It also reflects that the shape of the Marginal Abatement Cost curve, with price falls only increasing abatement by a small amount.  This means that even if prices are higher than current levels the effect of price falls on demand for allowances is still relatively small.

The relatively small response to price changes is consistent with the current market, where there is a lack of sufficient increase in demand to absorb the current yearly surplus (or even to come close to doing so).

The 90%-plus of the allowances freed up by additional actions are added to the surplus end up over time in the MSR.  They then stay there for several decades.  This is because even without additional actions, and even with some reform of the current proposals for Phase 4 (which covers 2021 to 2030), the MSR is likely contain at least three billion allowances by 2030, and perhaps as much as five billion.  This will take until 2060 to return to the market, and perhaps until the 2080s, at the maximum rate written into the legislation of 100 million per annum.

Any additional surplus will only return after this.  Even if the return rate of the MSR were doubled the return time for additional surplus would still be reckoned in decades from now.

This will be even more the case if proposals for the EUETS Phase 4 are not reformed, and the surplus of allowances being generated anyway is correspondingly greater.

The implications of the very long delay in the return of allowances

It seems unlikely that allowances kept out of the market for so long would ever lead to additional emissions.  It would require policy makers to allow the allowances to return and enable additional emissions.  This would be at a time when emission limits would be much tighter than they are now, and indeed with a commitment under the Paris Agreement to work towards net zero emissions in the second half of this century.

There are several policy mechanisms that could prevent the additional surplus allowances enabling emissions.  Subsequent caps tighter as unused allowances reduce the perceived risk of tighter caps, and additional actions now set the economy on a lower carbon pathway.  Furthermore, with a very large number of allowances in the MSR over several phases of the scheme, allowances may well be cancelled.  Indeed, over such long periods the ETS itself may even be abolished or fundamentally reformed, with allowances not carried over in full.  Or a surplus under the EUETS may persist indefinitely as additional actions succeed in reducing emissions.

As the market tightens towards 2030 it is likely that a higher proportion of any additional emissions reductions will be absorbed by the market via a price effect, but it still seems unlikely to be as much as 100% given the long term trend to lower emissions and the lack of additional sources of demand, especially in the event of large scale additional actions[4].  Some of the policy responses described would still be expected to reduce the supply of allowances.

Conclusions

The argument that emissions will always rise to the level of the cap manifestly does not hold at present, when emissions are well below the cap. and there is a huge cumulative surplus of allowances.

In future, it seems likely that more than 90% of reductions in emissions from additional actions will simply add to the surplus, and eventually end up in the MSR.  They at least stay there for several decades, because of the very large volume that will anyway be in the MSR.

While there is in principle a possibility that they will eventually return to the market and allow additional emissions this appears most unlikely in practice.  Policy decisions will be affected by circumstances and this can readily prevent additional emissions, through some combination of tightening of the cap and cancellation of allowances.

Even when the market returns to scarcity these policy responses are likely to hold to a large extent, for example with lower prices enabling more stringent caps.  The hypothesis of no net reductions in emissions from additional actions thus seems unlikely ever to hold true.

Spurious arguments about a lack of net emissions reductions should not be used as a pretext for failing to take additional actions to reduce emissions now.

Adam Whitmore – 21st October 2016

 

Note:  A more detailed review of the issues raised in this post, and the accompanying modelling can be found in this report.

 

Examples of statements invoking the idea of fixed total emissions

For example, in 2015 RWE used such arguments in objecting to the closure of coal plant:

“The proposals [to reduce lignite generation] would not lead to a CO2 reduction in absolute terms.   [The number of] certificates in the ETS would remain unchanged and as a result emissions would simply be shifted abroad.” [5]

Similarly, in 2012 the then Chairman of the UK’s Parliament’s Energy and Climate Change Select Committee, opposed the UK’s carbon price support mechanism for the power sector arguing that:

“Unless the price of carbon is increased at an EU-wide level, taking action on our own will have no overall effect on emissions”[6]

Neutral, well-informed observers of energy markets have also made this case.  For example, Professor Steven Sorrel of Sussex University recently argued that:

“Any additional abatement in the UK simply ‘frees up’ EU allowances that can be either sold or banked, and hence used for compliance elsewhere within the EU ETS[7]

 

 

[1] This is analogous to the well-established rebound effect for energy efficiency measures.  Improved domestic insulation lowers the effective price of energy, so consumers take some of the benefits as increased warmth, and some as reduced consumption.  The argument here is that in effect there is a 100% rebound effect for emissions reductions under the EUETS.

[2] Such a situation occurred towards the end of Phase 1 of the EUETS (2005-7), which did not allow banking into Phase 2.  Towards the end of the Phase there was a surplus of allowances and the price fell to close to zero.

[3] The price change is modelled by assuming the price is set by discounting future abatement costs, with a later date for the market returning to balance leading to greater discounting and so a lower price.  The increase in demand for allowances is modelled based on a marginal abatement cost curve and consideration of sources of additional demand.  See report referenced at the end of this post for further details of the modelling.

[4] There are likely to be path dependency and hysteresis effects in the market which prevent a full rebound.

[5] See RWE statement, “Proposals of Federal Ministry for Economic Affairs and Energy endanger the future survival of lignite”, 20 March 2015. http://www.rwe.com/web/cms/en/113648/rwe/press-news/press-release/?pmid=4012793

[6] http://www.parliament.uk/briefing-papers/sn05927.pdf

[7] http://www.energypost.eu/brexit-opportunity-rethink-uk-carbon-pricing/